Presentation is loading. Please wait.

Presentation is loading. Please wait.

Long-term variations of vector and tensor anisotropies of cosmic rays

Similar presentations


Presentation on theme: "Long-term variations of vector and tensor anisotropies of cosmic rays"โ€” Presentation transcript:

1 Long-term variations of vector and tensor anisotropies of cosmic rays
P.Yu. Gololobov, G.F. Krymsky, P.A. Krivoshapkin Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia

2 NAGOYA MULTI-DIRECTIONAL MUON TELESCOPE
Introduction 2 NAGOYA MULTI-DIRECTIONAL MUON TELESCOPE Operates since 1970 till nowadays Provides the data of 17 direction COSMIC-RAY RESEARCH SECTION SOLAR-TERRESTRIAL ENVIRONMENT LABORATORY NAGOYA UNIVERSITY, NAGOYA JAPAN

3 CR anisotropy 3 ๐‘… 0 0 ๐‘… 1 1 ๐‘… 2 1 ๐‘… 2 2 Isotropic intensity
๐ผ ๐œƒ,๐œ‘ = ๐‘›=0 โˆž ๐‘š=0 ๐‘› ๐‘Ž ๐‘› ๐‘š cos ๐‘š๐œ‘ + ๐‘ ๐‘› ๐‘š ๐‘š๐œ‘ ๐‘ƒ ๐‘› ๐‘š ( sin ๐œƒ ) ๐ด =( ๐‘Ž 0 0 , ๐‘Ž 1 0 , ๐‘Ž 1 1 , ๐‘ 1 1 , ๐‘Ž 2 0 , ๐‘Ž 2 1 , ๐‘ 2 1 , ๐‘Ž 2 2 , ๐‘ 2 2 ) ๐‘… ๐‘› ๐‘š =( ๐‘Ž ๐‘› ๐‘š , ๐‘ ๐‘› ๐‘š ) ๐‘… isotropic intensity ๐‘… 1 1 ={ ๐‘Ž 1 1 , ๐‘ 1 1 }- symmetric diurnal variations ๐‘… 2 1 ={ ๐‘Ž 2 1 , ๐‘ 2 1 } - anti-symmetric diurnal variations ๐‘… 2 2 ={ ๐‘Ž 2 2 , ๐‘ 2 2 } - semidiurnal variations Isotropic intensity Vector anisotropy Tensor anisotropy ๐‘… 0 0 ๐‘… 1 1 ๐‘… 2 1 ๐‘… 2 2

4 Method of VA and TA decomposition
4 ๐ด =( ๐‘Ž 0 0 , ๐‘Ž 1 0 , ๐‘Ž 1 1 , ๐‘ 1 1 , ๐‘Ž 2 0 , ๐‘Ž 2 1 , ๐‘ 2 1 , ๐‘Ž 2 2 , ๐‘ 2 2 ) ๐ด =( ๐‘Ž ๐‘› ๐‘š , ๐‘ ๐‘› ๐‘š ) ๐‘ =( ๐‘ฅ ๐‘› ๐‘š , ๐‘ฆ ๐‘› ๐‘š ) Receiving vectors (Fujimoto et al., 1984) ๐ผ= ๐ด โˆ™ ๐‘ ๐‘จ 1,๐‘œ๐‘๐‘  = ๐‘Ž 1,1 ๐‘ 1,1 โ‹ฎ ๐‘Ž 1,๐‘— ๐‘ 1,๐‘— ๐‘จ 2,๐‘œ๐‘๐‘  = ๐‘Ž 2,1 ๐‘ 2,1 โ‹ฎ ๐‘Ž 2,๐‘— ๐‘ 2,๐‘— ๐‘ด 1 = ๐‘ฅ 1,1 1 ๐‘ฆ 1,1 1 ๐‘ฅ 2,1 1 ๐‘ฆ 2,1 1 โˆ’๐‘ฆ 1,1 1 ๐‘ฅ 1,1 1 โˆ’๐‘ฆ 2,1 1 ๐‘ฅ 2,1 1 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘ฅ 1,๐‘— 1 ๐‘ฆ 1,๐‘— 1 ๐‘ฅ 2,๐‘— 1 ๐‘ฆ 2,๐‘— 1 โˆ’๐‘ฆ 1,๐‘— 1 ๐‘ฅ 1,๐‘— 1 โˆ’๐‘ฆ 2,๐‘— 1 ๐‘ฅ 2,๐‘— 1 ๐‘ด 2 = ๐‘ฅ 2,1 2 ๐‘ฆ 2,1 2 โˆ’๐‘ฆ 2,1 2 ๐‘ฅ 2,1 2 โ‹ฎ โ‹ฎ ๐‘ฅ 2,๐‘— 2 ๐‘ฆ 2,๐‘— 2 โˆ’๐‘ฆ 2,๐‘— 2 ๐‘ฅ 2,๐‘— 2 ๐‘จ 1,๐‘’๐‘ฅ๐‘ = ๐‘ด 1 ๐‘จ 1,๐‘œ๐‘๐‘  ๐‘ด 1 ๐‘‡ ๐‘ด 1 โˆ’1 ๐‘ด 1 ๐‘‡ ๐‘จ 1,๐‘œ๐‘๐‘  = ๐‘จ 1,๐‘’๐‘ฅ๐‘ ๐‘จ 2,๐‘’๐‘ฅ๐‘ = ๐‘ด 2 ๐‘จ 2,๐‘œ๐‘๐‘  ๐‘ด 2 ๐‘‡ ๐‘ด 2 โˆ’1 ๐‘ด 2 ๐‘‡ ๐‘จ 2,๐‘œ๐‘๐‘  = ๐‘จ 2,๐‘’๐‘ฅ๐‘ ๐‘จ 1,๐‘’๐‘ฅ๐‘ = ๐‘Ž ๐‘ ๐‘Ž ๐‘ 2 1 ๐‘จ 2,๐‘’๐‘ฅ๐‘ = ๐‘Ž ๐‘ 2 2 Errors: โˆ† 1 = ๐‘จ 1,๐‘œ๐‘๐‘  โˆ’ ๐‘ด 1 ๐‘จ 1,๐‘’๐‘ฅ๐‘ ๐œŽ 1 = โˆ† 1 ๐‘‡ โˆ† 1 ๐‘‡ ( ๐‘ต 1 โˆ’ ๐’ 1 ) โˆ† 2 = ๐‘จ 2,๐‘œ๐‘๐‘  โˆ’ ๐‘ด 2 ๐‘จ 2,๐‘’๐‘ฅ๐‘ ๐œŽ 2 = โˆ† 2 ๐‘‡ โˆ† 2 ๐‘‡ ( ๐‘ต 2 โˆ’ ๐’ 2 ) K. Fujimoto, A. Inoue, K. Murakami et al. Coupling coefficients of cosmic ray daily variations for meson telescopes. Report of cosmic ray research laboratory 9, 1984.

5 Obtained results 5 Fig. 2. The observed mean annual values of amplitudes of symmetric diurnal ๐‘… 1 1 , antisymmetric diurnal ๐‘… 2 1 , semidiurnal ๐‘… Also the maximum times of symmetric diurnal ๐‘‡ 1,๐‘š๐‘Ž๐‘ฅ 1 and semidiurnal ๐‘‡ 2,๐‘š๐‘Ž๐‘ฅ 2 variations. The solar sunspot number and the average solar field of the Northern and Southern Hemispheres , that is taken by measurements from the Wilcox Solar Observatory ,are shown

6 Obtained results 6 FFT Fig. Observed mean monthly values of the component of diurnal ( ๐‘Ž 1 1 , ๐‘ 1 1 ), antisymmetric ( ๐‘Ž 2 1 , ๐‘ 2 1 ) and semidiurnal ( ๐‘Ž 2 2 , ๐‘ 2 2 ) variations of CR which are obtained by the data of 17 directions of the multidirectional muon telescope st. Nagoya for the time period

7 Obtained results 7 - the annual oscillations of TA are of solar origin! - the reason of such behavior is that coordinate systems which was used in the method and the mechanisms donโ€™t match! P.A. Krivoshapkin, G.F. Krymsky, A.I. Kuzmin et al. The second spherical harmonics in the distribution of cosmic rays. Acta Physics Academiae Scientiarum Hungaricae. V. 29, P. 147, 1970. E.G. Berezhko. Acceleration of charged particles in a cosmic-phase shear flow. JETP Letters. V. 33, P. 399, 1981.

8 The possible mechanisms that create TA are:
Obtained results 7 The possible mechanisms that create TA are: Screening of CR by IMF (Krivoshapkin et al., 1970) ๐ด 1 = , 0, 0, cos2๐œ‘ sin2๐œ‘ Shear flow of SW (Berezhko, 1981) ๐ด 2 ={ 0, cos๐œƒ, sin๐œƒ, 0, 0 } P.A. Krivoshapkin, G.F. Krymsky, A.I. Kuzmin et al. The second spherical harmonics in the distribution of cosmic rays. Acta Physics Academiae Scientiarum Hungaricae. V. 29, P. 147, 1970. E.G. Berezhko. Acceleration of charged particles in a cosmic-phase shear flow. JETP Letters. V. 33, P. 399, 1981.

9 Obtained results 8 โ„Ž ๐‘ก =1โˆ’ ๐‘˜ 1 sin๐‘ก โˆ’ ๐‘˜ 2 ( sin 2 ๐‘กโˆ’ 1 2 )
Latitudinal distribution of Screening mechanism โ„Ž ๐‘ก =1โˆ’ ๐‘˜ 1 sin๐‘ก โˆ’ ๐‘˜ 2 ( sin 2 ๐‘กโˆ’ 1 2 ) The resulting TA from both mechanisms in GSE coordinate system ๐ด =โ„Ž ๐‘ก ๐ด 1 + ๐‘˜ 3 ๐ด 2 ๐‘ด ๐‘™๐‘œ๐‘›๐‘” (๐›ผ)= cos๐›ผ sin๐›ผ โˆ’sin๐›ผ cos๐›ผ cos2๐›ผ sin2๐›ผ โˆ’sin2๐›ผ cos2๐›ผ ๐‘ด ๐‘™๐‘Ž๐‘ก (๐›ฝ)= 1โˆ’ 3 2 sin 2 ๐›ฝ 0 โˆ’ sin2๐›ฝ โˆ’ sin 2 ๐›ฝ 0 0 cos๐›ฝ 0 0 โˆ’sin๐›ฝ โˆ’ sin2๐›ฝ 0 cos2๐›ฝ 1 2 sin2๐›ฝ 0 โˆ’ sin 2 ๐›ฝ 0 โˆ’ 1 2 sin2๐›ฝ 1 2 (1+ cos 2 ฮฒ) 0 0 sin๐›ฝ 0 0 cos๐›ฝ ๐‘ด ๐‘™๐‘œ๐‘›๐‘” (๐›ผ) ๐‘ด ๐‘™๐‘œ๐‘›๐‘” (๐›ฝ) ๐‘ด ๐‘™๐‘œ๐‘›๐‘” (๐›พ) ๐ด

10 Obtained results 9 Experiment vs Model The existence of NS asymmetry (Krymsky et al., 2007, 2010) The IMF tilted to the south of helioequator โ‰ˆ6.3ยฐ ๐‘˜ 1 =0.2 ๐‘˜ 2 =0.12 ๐‘˜ 3 =0.05 ๐œ‘=50ยฐ ๐œƒ=โˆ’40ยฐ

11 Conclusions 10 By the data of multidirectional muon telescope st. Nagoya for the period using the method of receiving vectors the decomposition of the observed diurnal variations into the vector and tensor anisotropies of CR is made. It is shown that the vector anisotropy of CR experiences changes with the solar magnetic cycle and solar activity. The main mechanism of the generation of this anisotropy is convective-diffusive and drift motion of CR. It is shown that the components of tensor anisotropy( ๐‘Ž 2 1 , ๐‘ 2 1 , ๐‘Ž 2 2 , ๐‘ 2 2 ) experience stable annual and semiannual oscillation during the whole investigated time period, which are generated mainly by the CR screening mechanism. The mechanism of CR shear flow has a small contribution to this variations. Comparison of the model and experiment indicates that there is a shift of interplanetary magnetic field to the south of the solar equator on โ‰ˆ6.3ยฐ.

12 Thank you for attention!
The work was supported by the grants RFBR Nos r_vostok_a, r_vostok_a and the program of Presidium of SB RAS No. 23. We acknowledge Cosmic Ray Section, Solar-Terrestrial Environment Laboratory, Nagoya University and Wilcox Solar Observatory for providing the data.


Download ppt "Long-term variations of vector and tensor anisotropies of cosmic rays"

Similar presentations


Ads by Google