Download presentation
Presentation is loading. Please wait.
1
Busch Complexity Lectures: Turing Machines
Prof. Busch - LSU
2
The Language Hierarchy
? ? Context-Free Languages Regular Languages Prof. Busch - LSU
3
Context-Free Languages
Languages accepted by Turing Machines Context-Free Languages Regular Languages Prof. Busch - LSU
4
A Turing Machine Tape ...... ...... Read-Write head Control Unit
Prof. Busch - LSU
5
The Tape No boundaries -- infinite length ...... ......
Read-Write head The head moves Left or Right Prof. Busch - LSU
6
The head at each transition (time step): 1. Reads a symbol
...... ...... Read-Write head The head at each transition (time step): 1. Reads a symbol 2. Writes a symbol 3. Moves Left or Right Prof. Busch - LSU
7
Example: Time 0 ...... ...... Time 1 ...... ...... 1. Reads 2. Writes
3. Moves Left Prof. Busch - LSU
8
Time 1 ...... ...... Time 2 ...... ...... 1. Reads 2. Writes 3. Moves Right Prof. Busch - LSU
9
The Input String Input string Blank symbol ...... ...... head
Head starts at the leftmost position of the input string Prof. Busch - LSU
10
States & Transitions Write Read Move Left Move Right Prof. Busch - LSU
11
Example: Time 1 ...... ...... current state Prof. Busch - LSU
12
Time 1 ...... ...... Time 2 ...... ...... Prof. Busch - LSU
13
Example: Time 1 ...... ...... Time 2 ...... ...... Prof. Busch - LSU
14
Example: Time 1 ...... ...... Time 2 ...... ...... Prof. Busch - LSU
15
Turing Machines are deterministic
Determinism Turing Machines are deterministic Not Allowed Allowed No lambda transitions allowed Prof. Busch - LSU
16
Partial Transition Function
Example: ...... ...... Allowed: No transition for input symbol Prof. Busch - LSU
17
Halting The machine halts in a state if there is
no transition to follow Prof. Busch - LSU
18
Halting Example 1: ...... ...... No transition from HALT!!!
Prof. Busch - LSU
19
No possible transition from and symbol
Halting Example 2: ...... ...... No possible transition from and symbol HALT!!! Prof. Busch - LSU
20
Accepting States Not Allowed Allowed
Accepting states have no outgoing transitions The machine halts and accepts Prof. Busch - LSU
21
Acceptance If machine halts Accept Input in an accept state string
in a non-accept state or If machine enters an infinite loop Reject Input string Prof. Busch - LSU
22
In order to accept an input string,
Observation: In order to accept an input string, it is not necessary to scan all the symbols in the string Prof. Busch - LSU
23
Turing Machine Example
Input alphabet Accepts the language: Prof. Busch - LSU
24
Time 0 Prof. Busch - LSU
25
Time 1 Prof. Busch - LSU
26
Time 2 Prof. Busch - LSU
27
Time 3 Prof. Busch - LSU
28
Time 4 Halt & Accept Prof. Busch - LSU
29
Rejection Example Time 0 Prof. Busch - LSU
30
No possible Transition
Time 1 No possible Transition Halt & Reject Prof. Busch - LSU
31
A simpler machine for same language
but for input alphabet Accepts the language: Prof. Busch - LSU
32
Not necessary to scan input
Time 0 Halt & Accept Not necessary to scan input Prof. Busch - LSU
33
Infinite Loop Example A Turing machine for language Prof. Busch - LSU
34
Time 0 Prof. Busch - LSU
35
Time 1 Prof. Busch - LSU
36
Time 2 Prof. Busch - LSU
37
Time 2 Time 3 Infinite loop Time 4 Time 5 Prof. Busch - LSU
38
Because of the infinite loop: The accepting state cannot be reached
The machine never halts The input string is rejected Prof. Busch - LSU
39
Another Turing Machine Example
Turing machine for the language Prof. Busch - LSU
40
Basic Idea: Match a’s with b’s: Repeat: replace leftmost a with x
find leftmost b and replace it with y Until there are no more a’s or b’s If there is a remaining a or b reject Prof. Busch - LSU
41
Time 0 Prof. Busch - LSU
42
Time 1 Prof. Busch - LSU
43
Time 2 Prof. Busch - LSU
44
Time 3 Prof. Busch - LSU
45
Time 4 Prof. Busch - LSU
46
Time 5 Prof. Busch - LSU
47
Time 6 Prof. Busch - LSU
48
Time 7 Prof. Busch - LSU
49
Time 8 Prof. Busch - LSU
50
Time 9 Prof. Busch - LSU
51
Time 10 Prof. Busch - LSU
52
Time 11 Prof. Busch - LSU
53
Time 12 Prof. Busch - LSU
54
Time 13 Halt & Accept Prof. Busch - LSU
55
machine for the language
Observation: If we modify the machine for the language we can easily construct a machine for the language Prof. Busch - LSU
56
Formal Definitions for Turing Machines
Prof. Busch - LSU
57
Transition Function Prof. Busch - LSU
58
Transition Function Prof. Busch - LSU
59
Turing Machine: Input Tape alphabet alphabet States Transition Accept
function Accept states Initial state blank Prof. Busch - LSU
60
Configuration Instantaneous description: Prof. Busch - LSU
61
Time 4 Time 5 A Move: (yields in one mode) Prof. Busch - LSU
62
Time 4 Time 5 Time 6 Time 7 A computation Prof. Busch - LSU
63
Equivalent notation: Prof. Busch - LSU
64
Initial configuration:
Input string Prof. Busch - LSU
65
The Accepted Language For any Turing Machine Initial state
Accept state Prof. Busch - LSU
66
Recursively Enumerable
If a language is accepted by a Turing machine then we say that is: Turing Recognizable Other names used: Turing Acceptable Recursively Enumerable Prof. Busch - LSU
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.