Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Binomial & Multinomial Coefficients

Similar presentations


Presentation on theme: "The Binomial & Multinomial Coefficients"— Presentation transcript:

1 The Binomial & Multinomial Coefficients

2 Binomial Coeffcient In formulas arising from the analysis of algorithms in computer science, the binomial coefficients occur over and over again, so that a facility for manipulating them is a necessity. Moreover, different approaches to problems often give rise to formulas that are different in appearance yet identities of binomial coefficients reveal that they are, in fact, the same expressions.

3 Consider the patterns formed by expanding (x + y)n.
The binomial theorem provides a useful method for raising any binomial to a nonnegative integral power. Consider the patterns formed by expanding (x + y)n. (x + y)0 = 1 1 term (x + y)1 = x + y 2 terms (x + y)2 = x2 + 2xy + y2 3 terms (x + y)3 = x3 + 3x2y + 3xy2 + y3 4 terms (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 5 terms 6 terms (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 Notice that each expansion has n + 1 terms. Example: (x + y)10 will have , or 11 terms. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Binomial Expansions

4 Patterns of Exponents in Binomial Expansions
Consider the patterns formed by expanding (x + y)n. (x + y)0 = 1 (x + y)1 = x + y (x + y)2 = x2 + 2xy + y2 (x + y)3 = x3 + 3x2y + 3xy2 + y3 (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 1. The exponents on x decrease from n to 0. The exponents on y increase from 0 to n. 2. Each term is of degree n. Example: The 5th term of (x + y)10 is a term with x6y4.” Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Patterns of Exponents in Binomial Expansions

5 Binomial Coefficients
The coefficients of the binomial expansion are called binomial coefficients. The coefficients have symmetry. (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 1 The first and last coefficients are 1. The coefficients of the second and second to last terms are equal to n. Example: What are the last 2 terms of (x + y)10 ? Since n = 10, the last two terms are 10xy9 + 1y10. The coefficient of xn–ryr in the expansion of (x + y)n is written or nCr . So, the last two terms of (x + y)10 can be expressed as 10C9 xy9 + 10C10 y10 or as xy y10. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Binomial Coefficients

6 The triangular arrangement of numbers below is called Pascal’s Triangle.
0th row 1 1 1 1st row 1 + 2 = 3 2nd row 3rd row 6 + 4 = 10 4th row 5th row Each number in the interior of the triangle is the sum of the two numbers immediately above it. The numbers in the nth row of Pascal’s Triangle are the binomial coefficients for (x + y)n . Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Pascal’s Triangle

7 Example: Pascal’s Triangle
Example: Use the fifth row of Pascal’s Triangle to generate the sixth row and find the binomial coefficients , , 6C4 and 6C2 . 5th row 6th row 1 6 15 20 15 6 1 6C C1 6C C C4 6C C6 = 6 = and 6C4 = 15 = 6C2. There is symmetry between binomial coefficients. nCr = nCn–r Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: Pascal’s Triangle

8 Example: Pascal’s Triangle
Example: Use Pascal’s Triangle to expand (2a + b)4. 1 1 1st row 2nd row 3rd row 4th row 0th row 1 (2a + b)4 = 1(2a)4 + 4(2a)3b + 6(2a)2b2 + 4(2a)b3 + 1b4 = 1(16a4) + 4(8a3)b + 6(4a2b2) + 4(2a)b3 + b4 = 16a4 + 32a3b + 24a2b2 + 8ab3 + b4 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: Pascal’s Triangle

9 Formula for the Binomial Coefficients
The symbol n! (n factorial) denotes the product of the first n positive integers. 0! is defined to be 1. 1! = 1 4! = 4 • 3 • 2 • 1 = 24 6! = 6 • 5 • 4 • 3 • 2 • 1 = 720 n! = n(n – 1)(n – 2)  3 • 2 • 1 Formula for Binomial Coefficients For all nonnegative integers n and r, Example: Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Formula for the Binomial Coefficients

10 Example: Binomial coefficients
Example: Use the formula to calculate the binomial coefficients 10C5, 10C0, and Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: Binomial coefficients

11 Definition: Binomial Theorem
Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Definition: Binomial Theorem

12

13 Definition: Binomial Theorem
Example: Use the Binomial Theorem to expand (x4 + 2)3. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Definition: Binomial Theorem

14 Definition: Binomial Theorem
Although the Binomial Theorem is stated for a binomial which is a sum of terms, it can also be used to expand a difference of terms. Simply rewrite (x + y) n as (x + (– y)) n and apply the theorem to this sum. Example: Use the Binomial Theorem to expand (3x – 4)4. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Definition: Binomial Theorem

15 Example:Using the Binomial Theorem
Example: Use the Binomial Theorem to write the first three terms in the expansion of (2a + b)12 . Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example:Using the Binomial Theorem

16 Example: Find the nth term
Example: Find the eighth term in the expansion of (x + y)13 . Think of the first term of the expansion as x13y 0 . The power of y is 1 less than the number of the term in the expansion. The eighth term is 13C7 x 6 y7. Therefore, the eighth term of (x + y)13 is 1716 x 6 y7. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Example: Find the nth term

17 = 55,427,328 a7b5 Find the 6th term in the expansion of (3a + 2b)12
Using the Binomial Theorem, let x = 3a and y = 2b and note that in the 6th term, the exponent of y is m = 5 and the exponent of x is n – m = 12 – 5 = 7. Consequently, the 6th term of the expansion is: = 55,427,328 a7b5

18 E.g. 7—Finding a Particular Term in a Bin. Expansion
Find the coefficient of x8 in the expansion of Both x2 and 1/x are powers of x. So, the power of x in each term of the expansion is determined by both terms of the binomial.

19 E.g. 7—Finding a Particular Term in a Bin. Expansion
To find the required coefficient, we first find the general term in the expansion. By the formula, we have: a = x2, b = 1/x, n = 10 So, the general term is:

20 E.g. 7—Finding a Particular Term in a Bin. Expansion
Thus, the term that contains x8 is the term in which r – 10 = 8 r = 6 So, the required coefficient is:

21 Example1

22 Example 2

23 Binomial formula

24 Identitity 1

25 Identity 2

26

27 Work problems

28 Multinomial Problems

29

30 Problem 1

31 Ans

32 Work problems

33


Download ppt "The Binomial & Multinomial Coefficients"

Similar presentations


Ads by Google