Download presentation
Presentation is loading. Please wait.
1
Quantum simulators and hybrid algorithms
Aleksei Dmitriev, LAQS, MIPT Введение. Зачем нужен семинар. Формат свободной дискуссии. Введение в тему.
2
Contents A (very) brief introduction to quantum computing
Algorithms and simulators Hybrid (classical-quantum) algorithm: Variational Quantum Eigensolver (VQE) Quantum Chemistry Quantum Subspace Expansion (QSE) algorithm Paper Хотелось сделать введение но тема очень обширна.
3
Quantum computer Quantum Turing Machine
Quantum circuit model - equivalent Set of machine’s states Q – Hilbert space of head (qubit?) Alphabet symbols Γ – H.s. of states of individual cells (qubits) Blank symbol b ∈ Γ - zero state vector Transition function δ: Q ⊗ Γ → Q ⊗ Γ x {L,R,N} realized, e.g., by interaction of a head qubit with a cell qubit Компьютер. Машиа Тьюринга – все умеет считать. Квантовый аналог? Их есть у меня? David Deutsch
4
Quantum computer Solves arbitrary tasks (classical or quantum) and requires long coherence and evolution of many qubit system Shor’s algorithm: factorization O((log N)2(log log N)(log log log N)) = 104 gates for 100- digit N Quantum phase estimation: for given H define its eigenvector |ψa〉and eigenvalue λ O(p-1) «evolutional» ( ) operations for precision p Quantum simulators: to mimic an evolution of arbitrary system Ha Peter Shor Чем занимается компьютер. Чем плохи квантовые алгоритмы. Есть еще симуляторы. Это не совсем алгоритмы. 4
5
Quantum simulator Simulator without interactions (only adjusting knobs) Allows to simulate an evolution like where is algebra generated by commutation Any (nonlinear) interaction – arbitrary evolution! Simulation of unitary evolution of N qubits is not in fact efficient logic operations System with local interactions and many others total number of operations is grows linearly with N and t Seth Lloyd 5
6
Hybrid algorithms Idea: is basis in 2x2 complex Hilbert space polynomial number of terms O(P(N)): quantum Ising, Heisenberg models, any k-sparse Hamiltonian Separate optimization all of reduced states – QMA Hard we dramatically reduce the coherence time requirement while maintaining an exponential advantage over the classical case, by adding a polynomial number of repetitions with respect to QPE costs local qubit measurements Quantum expectation estimation (QEE) 6
7
VQE algorithm Ground state vector: is minimized classically (but using QEE as a subroutine) Good anzatz is needed for the parametrization (only polynomial number of parameters!) Jordan-Wigner Transformation – from fermionic operators to qubits 7
8
VQE algorithm 8
9
Quantum chemistry 9 Exact solution – nearly impossible LCAO
Slater-type orbitals (STO): Calculation of kinetic energy, nuclear attraction, Coulomb repulsion – integrals – hard computation STO-nG basis – to simplify computation, STO is presented as a combination of Gaussians 9
10
Quantum chemistry: H2 molecule
g depend parametrically on R 10
11
Concept of experiment 11
12
Measurement scheme
13
B-swap gate 12 S. Poletto et al. PRL 2012
14
Particle swarm optimization
Avoids to be trapped in local minima Robust to noisy functions Very flexible. Swarm interaction is adjustable 13
15
Results of convergence
VQE has intrinsic property to correct coherent errors 14
16
Quantum subspace expansion
VQE: gives only ground state. How to compute excited? fermionic representation qubit representation minimizes Rayleigh quotient 15
17
Main result: a spectrum of molecule
16
18
Result of QSE protocol 17
19
QSE with nonunitary evolution
18
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.