Presentation is loading. Please wait.

Presentation is loading. Please wait.

Muller’s Derivation.

Similar presentations


Presentation on theme: "Muller’s Derivation."— Presentation transcript:

1 Muller’s Derivation

2 Muller’s Method quadratic y = f(x) x x1 x2 x3

3 Muller’s Method Start with three points (x1,y1), (x2,y2), (x3,y3) and the quadratic in the form of   y = d1(x-x2)(x-x3) + c2(x-x3) + y3 y1 – y2 Define c1 = x1 – x2 Substitute (x2,y2) into the above quadratic ( ), we get y2 = d1(x2-x2)( x2-x3) + c2(x2-x3) + y3 y2 - y3 = c2 x2 - x3

4 Continue Substitute (x1,y1) into the above quadratic ( ), we get
y1 = d1(x1-x2)( x1-x3) + c2(x1-x3) + y3    y1 - y3 = d1(x1-x2) + c2 x1 - x3 y1 – y2 + y2 - y3 c2 = d1(x1-x2) y1 – y2 + y2 - y c2 = d1 (x1 - x3)(x1-x2) (x1-x2)

5 Continue y1 – y2 y2 - y3 (x1-x3)c2
= d1 (x1-x3)(x1-x2) (x1-x3)(x1-x2) (x1-x2)(x1-x3) (y2 - y3)( x2 - x3) c x2 - x (x1-x3)c2 = d1 (x1-x3) (x1-x3)(x1-x2) (x1-x2)(x1-x3)

6 Continue c1 c2 (x2-x3) (x1-x3)c2
= d1 (x1-x3) (x1-x3)(x1-x2) (x1-x2)(x1-x3) c c2 (x2-x1) = d1 (x1-x3) (x1-x3)(x1-x2) c c2 = d1 (x1-x3)

7 y = d1(x-x3)(x-x3)+ d1(x3-x2)(x-x3)+ c2(x-x3) + y3
Continue Consider the quadratic ( )again y = d1(x-x2)(x-x3) + c2(x-x3) + y3   y = d1(x-x3+x3-x2)(x-x3) + c2(x-x3) + y3 y = d1(x-x3)(x-x3)+ d1(x3-x2)(x-x3)+ c2(x-x3) + y3   y = d1(x-x3)2 + d1(x3-x2)(x-x3) + c2(x-x3) + y3 Let s = d1(x3-x2) + c2 then y = d1(x-x3)2 + s(x-x3) + y3 Solve for a root: 0 = d1(x-x3)2 + s(x-x3) + y3

8 Continue To find the root closest to x3, find x so that z = 1/(x - x3)
is as large as possible. So solve for z in 0 = d1 + sz + y3z2 __________ z = -s   s2 – 4y3d1 2 y3 _________ z = -s - sign(s) s2 – 4y3d1 So, x = x ___________ s + sign(s) s2 – 4y3d1

9 Muller’s Method

10 Try Some Examples Solve x3 – x + 2 = 0 >> roots([1 0 -1 2])
ans = i i >> mullerquick(inline('x^3-x+2'),0,-.5, -1) x(1) = i x(2) = i x(3) = i x(4) = i x(5) = i x(6) = i x(7) = i

11 Continue >> mullerquick(inline('x^3-x+2'),.5+1i,.6+.9i,.7+.8i)
x(87) = i x(88) = i x(89) = i x(90) = i x(91) = i x(92) = i x(93) = i


Download ppt "Muller’s Derivation."

Similar presentations


Ads by Google