Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jean-Baptiste Melin U.C. Davis J. Bartlett J. Delabrouille

Similar presentations


Presentation on theme: "Jean-Baptiste Melin U.C. Davis J. Bartlett J. Delabrouille"— Presentation transcript:

1 Extracting clusters and determining the selection function for SZ surveys
Jean-Baptiste Melin U.C. Davis J. Bartlett J. Delabrouille APC – College de France

2 Contents I. Theoretical selection function of SZ cluster surveys
II. Fast SZ extraction algorithm III. Selection function results

3 Contents I. Theoretical selection function of SZ cluster surveys
II. Fast SZ extraction algorithm III. Selection function results

4 The selection function ?
Contamination Completeness (c,Y)= Number of false detections Total number of detections (recovered clusters + false detections) (c,Y)= Number of recovered clusters True number of clusters If you don’t know  and y, don’t expect to do science !

5 Matched filters (1/2) AMPLITUDE ? c NORMALIZED TEMPLATE NOISE
Haehnelt & Tegmark 96 Herranz et al. 2002a, 2002b AMPLITUDE ? c c=2 arcmin CMB CMB+beam Instrumental noise NORMALIZED TEMPLATE NOISE

6 Matched filters (2/2)  in Fourier space  in real space Aest
linear estimator unbiased <Aest-A>=0 minimize the variance =<(Aest-A)2>  in Fourier space  in real space [arbitrary unit] [arbitrary unit] Aest (S/N)est= Aest/ single-frequency & multi-frequency

7 Y = Aest Tc > 5 .  . Tc
AMI-like : =15GHz, beam=2arcmin inst. noise=5µK/beam, pt. sources : S<100Jy Aest/>5 Y = Aest Tc > 5 .  . Tc

8 Contents I. Theoretical selection function of SZ cluster surveys
II. Fast SZ extraction algorithm III. Selection function results

9 Cluster extraction in 3 steps Simulations
15 GHz 30 GHz 90 GHz pix=30’’ Primary CMB anisotropies Instrumental beam (fwhm=2 arcmin) Insrumental white noise (DT=20 K/pix) Radio sources (S<0.1mJy at 15 GHZ) Multifrequency (n=15, 30, 90 GHz) Cosmology : LCDM

10 Cluster extraction Filtered map sample
Step 1 c(filter)=3.0 arcmin c(filter)=0.1 arcmin c(filter)=1.6 arcmin

11 Cluster extraction Cluster candidates
Step 2 S/Nthreshold = 3, 5, … S/Ncarte> S/Nthreshold c(filter)=3.0 arcmin c(filter)=0.1 arcmin c(filter)=1.6 arcmin

12 Cluster extraction c and Y recovery
Step 3 c given by the node having the highest S/N in a given branch Y derived from the filtered map at scale c c=3.0 arcmin . c=0.3 arcmin c=0.2 arcmin c=0.1 arcmin

13 Contents I. Theoretical selection function of SZ cluster surveys
II. Fast SZ extraction algorithm III. Selection function results

14 Single frequency – 15 GHz 50 simulations (3 deg × 3 deg each)
Cl perfectly known simulations detection theoretical selection fit CBI excess simulations detection theoretical selection fit

15 Single frequency – 15 GHz Cluster counts
Clusters with Y>5.10-5arcmin2

16 Single frequency – 15 GHz Cosmological parameters
BIAS !

17 Conclusions Multi-frequency/Single-frequency
Selection function non-trivial depends on instrument, observation strategy, confusion, cluster physics & data pipeline Bias Additional source of error ‘Survey calibration’ &

18

19 The method A Monte Carlo triangle Fast SZ simulation tool Fast SZ
detection tool Input catalog Output catalog Comparison Selection function

20 Single frequency – 15 GHz A non-trivial selection function
Clusters with Y>5.10-5arcmin2 Y>10-4arcmin2 Y>3.10-4arcmin2

21 Single frequency – 15 GHz Theoretical selection curves
détecté detected non détecté not detected


Download ppt "Jean-Baptiste Melin U.C. Davis J. Bartlett J. Delabrouille"

Similar presentations


Ads by Google