Download presentation
Presentation is loading. Please wait.
Published byMarcia Gibson Modified over 6 years ago
1
Ch. Stoyanov Two-Phonon Mixed-Symmetry States in the Domain N=52
Nuclear structure calculations in a large domain of excitation energies Two-Phonon Mixed-Symmetry States in the Domain N=52 Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia, Bulgaria
2
Nuclear structure calculations in a large domain of excitation energies
Microscopic description of mixed-symmetry states in nearly spherical nuclei Low-lying isovector excitations are naturally predicted in the algebraic IBM-2 as mixed symmetry states. Their main signatures are relatively weak E2 and strong M1 transition to symmetric states. T. Otsuka , A.Arima, and Iachello, Nucl .Phys. A309, 1 (1978) P. van Isacker, K.Heyde, J.Jolie et al., Ann. Phys. 171, 253 (1986)
3
U(5) limit of IBM-2 1 July 2016 Ch. Stoyanov
4
E2 and M1transitions connecting one phonon states
1 July 2016 Ch. Stoyanov
5
M1 Transitions conneting two-phonon states
1 July 2016 Ch. Stoyanov
6
General view 11 July 2015 Ch. Stoyanov
7
Nuclear structure calculations in a large domain of excitation energies
The model Hamiltonian
8
Quasiparticle RPA (collective effects)
Nuclear structure calculations in a large domain of excitation energies Quasiparticle RPA (collective effects)
9
Quasiparticle RPA (2) (quasiboson approximation)
Ch. Stoyanov
10
Quasiparticle RPA (3) (collective effects)
Nuclear structure calculations in a large domain of excitation energies Nuclear structure calculations in a large domain of excitation energies Quasiparticle RPA (3) (collective effects) 14
11
mixed-symmetry states
Nuclear structure calculations in a large domain of excitation energies Applications Even-even nuclei mixed-symmetry states
12
Mixed symmetry states Experiment
Nuclear structure calculations in a large domain of excitation energies Mixed symmetry states Experiment N. Pietralla et al., Phys. Rev. C 58, 796 (1998), N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999) inelastic hadron scattering cross sections measurements of the electron conversion coefficients in β decay 1 July 2016 Ch. Stoyanov 23
13
Mixed symmetry states Experiment
Nuclear structure calculations in a large domain of excitation energies Mixed symmetry states Experiment MS have been populated by means of many nuclear reactions as Inelastic scattering of Electrons Photons β decay Coulomb excitation 1 July 2016 Ch. Stoyanov 24
14
Nuclear structure calculations in a large domain of excitation energies
Review papers N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008). N Lo Iudice, V Yu Ponomarev, Ch Stoyanov, A V Sushkov, V V Voronov J. Phys. G: Nucl. Part. Phys. 39 (2012)
15
Test of the Structure In order to test the isospin nature of states the following ratio is computed: This ratio probes: The isoscalar ((2+)<1) and The isovector (B(2+)>1) properties of the 2+ state under consideration
16
Nuclear structure calculations in a large domain of excitation energies
The dependence of M1 and E2 transitions on the ratio G(2)/k0(2) in 136Ba.
17
Nuclear structure calculations in a large domain of excitation energies
Structure of the first RPA phonons (only the largest components are given) and corresponding B(2+) ratios for 136Ba B(2+)
18
Nuclear structure calculations in a large domain of excitation energies
11 July 2015 Ch. Stoyanov 30
19
Explanation of the method used
The quasi-particle Hamiltonian is diagonalized using the variational principle with a trial wave function of total spin JM Where ψ0 represents the phonon vacuum state and R, P and T are unknown amplitudes; ν labels the specific excited state.
20
B(E2; g.s.→ 2+) strength distributions in 94Mo.
Nuclear structure calculations in a large domain of excitation energies B(E2; g.s.→ 2+) strength distributions in 94Mo.
21
B(M1;2+k →2+1 ) strength distributions in 94Mo
Nuclear structure calculations in a large domain of excitation energies B(M1;2+k →2+1 ) strength distributions in 94Mo
22
96Ru New experimental information
Hennig et al. Phys. Rev. C (2015) Properties of the two-phohon mixed-symmetry quintuplet 2+1(sm) ⃰ 2+2(ms) Ch. Stoyanov
23
Contribution of main components in the structure of low-lying QRPA 2+ states in 96Ru.
Jπ E(MeV) Structure B(E2,g.st.→2+) (W.u.) B(M1) ( μ2N) 2+2→2+1 2+ 1 0.999 0.79(2d5/2)2n (1g9/2)2p 96 2+ 2 2.276 (2d5/2)2n (1g9/2)2p 3.8 1.37 Ch. Stoyanov
24
96 Ru isospin nature of 2+ states
Jπ B (2+) isoscalar (symmetric) isovector (mixed symmetry) Ch. Stoyanov
25
State Jπ E(MeV) EXP. QPM Structure,% 2+1 2+2 2+3
2+1 0.832 0.775 88%[2+1]QRPA +5%{[2+1]QRPA ⃰ [2+1]QRPA} + … 2+2 1.932 1.826 80% {[2+1]QRPA ⃰ [2+1]QRPA} + …. 2+3 2.283 2.164 90% [2+2 ]QRPA + .. Ch. Stoyanov
26
State E (MeV) Transition E2 [Wu] M1 [μN] strength Jπ EXP. QPM
Nuclear structure calculations in a large domain of excitation energies State E (MeV) Transition E2 [Wu] M1 [μN] strength Jπ EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g f ree B(σλ)IBM 2+1 0.832 0.775 2+1 →0+1 18.1(5) 16 18.4 2+2 1.932 1.826 2+2 →2+1 2+2 →0+1 0.05(2) …….. 28(9) 0.11 0.77 30 24 2+3 2.283 2.164 2+3 →2+1 2+3 →0+1 0.69(14) 1.36(19) 0.63 0.75 0.69 2.53 Ch. Stoyanov
27
Distribution of two-phonon component
{[2+1(sm)]QRPA ⃰ [2+2(ms)]QRPA} Jπ contribution E[MeV] % MeV % MeV % MeV Ch. Stoyanov
28
Forth and fifth quadrupole excitations
Jπ State E (MeV) Transition strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g free B(σλ)IBM 2+4 2.980 2+4→0+1 2+4→2+1 2+4→2+2 E2 M1 0.01 2.9 0.06 2+5 2.740 3.338 2+5 →0+1 2+5 →2+1 2+5 →2+2 0.006(12) 0.58(15) 0.17(3) 0.16 1.1 0.15 1.92 0.17 Ch. Stoyanov
29
3+ excited states structure
Jπ E(MeV) EXP. QPM Structure,% 3+1 2.852 2.644 9% {[2+1]QRPA ⃰ [2+2]QRPA} + …. 3+2 2.898 3.164 76% {[2+1]QRPA ⃰ [2+2]QRPA} + …. Ch. Stoyanov
30
3+ excited states Jπ State E (MeV) Transition strength EXP. QPM
strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g free B(σλ)IBM 3+1 2.852 2.644 3+1→2+1 3+1→2+2 E2 M1 < 0.01 0.008(1) < 5.58 0.09 0.016 0.009 14.7 3+2 2.898 3.164 3+2→2+1 3+2→2+2 < 0.28 0.02(4) 0.078(14) 0.66 0.07 0.27 3.17 0.56 Ch. Stoyanov
31
4+ excited states structure
Jπ E(MeV) EXP. QPM Structure,% 4+1 1.518 1.585 63% {[2+1]QRPA ⃰ [2+1]QRPA} + …. 4+2 2.462 2.207 61%[4+1]QRPA +13%{[2+1]QRPA ⃰ [2+1]QRPA} + 2.3% {[2+1]QRPA ⃰ [2+2]QRPA} +… 4+5 3.300 86% {[2+1]QRPA ⃰ [2+2]QRPA} + …. Ch. Stoyanov
32
4+ excited states Jπ State E (MeV) Transition strength EXP. QPM
strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g f ree B(σλ)IBM 4+1 1.518 1.585 4+1→2+1 E2 22.6(17) 15 25.6 4+2 2.462 2.207 4+2→4+1 4+2→2+1 M1 0.90(18) 1.52(19) 0.07 5.5 1.13 1.44 4+5 3.300 1.6 1.8 Ch. Stoyanov
33
1+ excited states structure
Jπ E(MeV) EXP. QPM Structure,% 1+1 3.154 3.118 93%{[2+1]QRPA ⃰ [2+2]QRPA} + .. Ch. Stoyanov
34
1+ excited states Jπ State E (MeV) Transition strength EXP. QPM
strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g f ree B(σλ)IBM 1+1 3.154 3.192 1+1 →0+1 M1 0.17(6) 0.13 Ch. Stoyanov
35
Nuclear structure calculations in a large domain of excitation energies
Conclusions There are two modes in the low-lying quadrupole excitations – isoscalar and isovector one. The properties of these two modes are close to IBM-2 symmetric and mixed-symmetry states. The coupling of the modes leads to variety of excited states. There are well pronounced regularities of E2 and M1 transitions connecting the states.
36
Thank You for Your attention!!!
Nuclear structure calculations in a large domain of excitation energies Thank You for Your attention!!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.