Download presentation
Presentation is loading. Please wait.
1
Introduction to Scheme
cs7100(Prasad) L3Scheme
2
Scheme Meta-language for coding interpreters Scheme = LISP + ALGOL
“clean” semantics Scheme = LISP + ALGOL simple uniform syntax; symbols and lists block structure; static scoping expression : evaluated for its value statement : evaluated for its effect Dynamic type checking flexible but inefficient (rapid prototyping) good for dealing with heterogeneous data structures cs7100(Prasad) L3Scheme
3
Expressions Literals Variables Procedure calls Literals Variables
numerals(2), strings(“abc”), boolean(#t), etc. Variables Identifier represents a variable. Variable reference denotes the value of its binding. x ref 5 cs7100(Prasad) L3Scheme
4
Scheme Identifiers E.g., y,x5,+,two+two,zero?, etc.
(Illegal) 5x,y)2,ab c, etc. Identifiers reserved keywords variables pre-defined functions/constants ordinary functions = procedures cs7100(Prasad) L3Scheme
5
Procedure Call (application)
(operator-expr operand-expr ...) prefix expression (proc/op arg1 arg2 arg3 ...) Order of evaluation of the sub-expressions is “explicitly” left unspecified by Scheme. cf. C is silent about it. cf. Java specifies a left to right processing. (+ x (p )) ((f 2 3) ) cs7100(Prasad) L3Scheme
6
Special Forms Definition Conditional > (define false #f)
(define <var> <expr>) > (define false #f) Conditional (if <test> <then> <else>) > (if (zero? 5) #t) > (if #t 'emptyList 'never) emptyList cs7100(Prasad) L3Scheme
7
Data Types values, operations, canonical representation Type-checking
static : compile-time : efficient dynamic : run-time : flexible numbers: +, -, *, number?, =, etc. booleans: #t, #f, boolean?, etc. strings: string?, string->list, etc. cs7100(Prasad) L3Scheme
8
Symbols Identifiers treated as primitive values. Primitive operations
Distinct from identifiers that name variables in the program text. Distinct from strings (sequence of characters). Primitive operations quote symbol? Facilitates meta-programming cs7100(Prasad) L3Scheme
9
Lists Ordered sequence of elements of arbitrary type (Heterogeneous)
operations car, cdr, cons, null?, ... list, append, ... cadr, caadr, caddr, … (cadar X) = (car (cdr (car X))) cs7100(Prasad) L3Scheme
10
Examples (cons (quote (a)) (quote (1 2))) => ((a) 1 2)
(cons ’(a) ’(1 2)) (list ’(a) ’(1 2) ’((“a”))) => ((a) (1 2) ((“a”))) (append ’(a) ’(1 2) ’((“a”))) => (a 1 2 (“a”)) cs7100(Prasad) L3Scheme
11
Pairs: Expression, Internal Representation and Print form
(cons 'a 'b) (cons 'a (cons 'b '()) ) = (a . b) b a = (a . (b . ()) ) = (a b) Dotted pair notation () a b cs7100(Prasad) L3Scheme
12
Equivalence : Syntactic vs Semantic
(eq? (cons 3 '()) (cons 3 '())) #f (define a (cons 3 '())) (define b (cons 3 '())) (eq? a b) (define c a) (eq? a c) #t Java: == vs .equals Scheme: eq? vs eqv? vs equal? (eqv? 'a 'b) ==> #f (eqv? '() '()) ==> #t (eqv? (cons 1 2) (cons 1 2)) ==> #f (let ((p (lambda (x) x))) (eqv? p p)) ==> #t (eqv? (lambda (x) x) (lambda (y) y)) ==> unspecified (eq? '(a) '(a)) ==> unspecified (eq? (list 'a) (list 'a)) ==> #f (eq? '() '()) ==> #t (eq? car car) ==> #t (let ((n (+ 2 3))) (eq? n n)) ==> unspecified (let ((x '(a))) (eq? x x)) ==> #t (equal? (make-vector 5 'a) (make-vector 5 'a)) ==> #t (equal? (lambda (x) x) (lambda (y) y)) ==> unspecified cs7100(Prasad) L3Scheme
13
Equivalence : Syntactic vs Semantic
(equal? (cons 3 '()) (cons 3 '())) #t (equal? (make-vector 5 'a) (make-vector 5 'a)) (equal? (lambda(x)x) (lambda(y)y)) #f Formally unspecified Java: == vs .equals Scheme: eq? vs eqv? vs equal? (eqv? 'a 'b) ==> #f (eqv? '() '()) ==> #t (eqv? (cons 1 2) (cons 1 2)) ==> #f (let ((p (lambda (x) x))) (eqv? p p)) ==> #t (eqv? (lambda (x) x) (lambda (y) y)) ==> unspecified (eq? '(a) '(a)) ==> unspecified (eq? (list 'a) (list 'a)) ==> #f (eq? '() '()) ==> #t (eq? car car) ==> #t (let ((n (+ 2 3))) (eq? n n)) ==> unspecified (let ((x '(a))) (eq? x x)) ==> #t (equal? (make-vector 5 'a) (make-vector 5 'a)) ==> #t (equal? (lambda (x) x) (lambda (y) y)) ==> unspecified cs7100(Prasad) L3Scheme
14
Vectors Both records and arrays provide random access to components. However, records are heterogeneous and provide access to components via field-names, while arrays are homogeneous and provide access to components via computable index. Vectors are heterogeneous structures that provide random access to components using a computable index. cs7100(Prasad) L3Scheme
15
Constructors and accessors
(define v (vector “1” (+ 1 2) )) #( “1” 3 ) (define v (vector “1” ’(+ 1 2) )) #( “1” (+ 1 2) ) (vector-ref v 0) “1” (vector-length v) 2 Index is 0-based. cs7100(Prasad) L3Scheme
16
Procedures In Scheme, procedures are first-class objects. That is, they may be (i) passed to procedures or (ii) returned from procedures or (iii) stored in a data structure. (procedure? append) #t (if (procedure? 3) car cdr) #<procedure> cs7100(Prasad) L3Scheme
17
(( (if (procedure? procedure?) car cdr) (cons cdr car) )
'(list append)) = ( (car (cons cdr car)) (cdr '(list append)) '(append) Function values and higher order functions; self-application cs7100(Prasad) L3Scheme
18
Apply-function (apply cons '( x (y z))) = (cons 'x '(y z)) = (x y z)
(apply f '(a1 a2 ... an)) = (f 'a1 'a2 ... 'an) (apply <func> <list-of-args>) Another example HOF: map BENEFIT: (0) Apply as shown enables one to unify functions of different arities. OTHER REAL BENEFITS: (1) writing function application expressions when the actual function value is to be determined at run-time. (2) defining variable-arity functions. cs7100(Prasad) L3Scheme
19
Apply-function Apply-function is not compelling if the function is of fixed arity and is statically known with its arguments. Apply-function is indispensable for defining variable arity function or for invoking dynamically computed function. Apply-function enables us to unify functions of different arities, and is an important component of an interpreter. Another example HOF: map BENEFIT: (0) Apply as shown enables one to unify functions of different arities. OTHER REAL BENEFITS: (1) writing function application expressions when the actual function value is to be determined at run-time. (2) defining variable-arity functions. cs7100(Prasad) L3Scheme
20
(apply apply (list procedure? (list apply))) = (apply apply
[ proc?-fn [ apply-fn ] ] ) = (apply proc?-fn [apply-fn] ) = (procedure? apply) = #t Programming with functions cs7100(Prasad) L3Scheme
21
Anonymous Functions (lambda <formals-list> <body-expr>)
E.g., ((lambda (n) (+ n 2)) (+ 1 4) ) = 7 Evaluate actual argument expressions Bind these values to corresponding formals in formals-list Evaluate body expression (static scoping) cs7100(Prasad) L3Scheme
22
Variable Arity Procedures
( ) (append '(1 (p q)) '() '(a b)) (list /4 5) (lambda <formal> <body>) <formal> is bound to the list of actual argument values supplied in a call. cs7100(Prasad) L3Scheme
23
(define mul (lambda x (if (null? x) 1 (* (car x) (apply mul (cdr x)) )
)) ; 1 is identity w.r.t * ) ; assuming * is binary (mul 2 (+ 2 2) 5) (mul 1 2 3) -> (apply mul ’(2 3)) Without apply, mul will get a list as actual argument. cs7100(Prasad) L3Scheme
24
Binding constructs in Scheme
define binds value to a name. l-function application binds formal parameters to actual argument values. let-constructs introduces local bindings let let* letrec Case-lambda construct enables default arguments but does not seem to be supported by R5RS. (define substring1 (case-lambda [(s) (substring1 s 0 (string-length s))] [(s start) (substring1 s start (string-length s))] [(s start end) (substring s start end)])) cs7100(Prasad) L3Scheme
25
let-construct ( let ( (var1 exp1) … (varn expn)) exp )
exp1 to expn are evaluated in the surrounding context. var1,…,varn are visible only in exp. (let ( (x 2) (y 7) ) y) 7 cs7100(Prasad) L3Scheme
26
(let ( (x y) (y 7) ) y) *error* “y” undefined (define y 5) 7
(let ( (x y) (y 7) ) x) 5 (let ( (y 7) (x y) ) x) 5 (not 7) cs7100(Prasad) L3Scheme
27
let* abbreviates nested-lets.
(define y 5) (let ( (y 7) (x y) ) x) 5 (let ( (y 7) ) (let ( (x y) ) x) ) 7 (let* ( (y 7) (x y) ) x) let* abbreviates nested-lets. Recursive and mutually recursive functions cannot be defined using let and let*. cs7100(Prasad) L3Scheme
28
letrec-construct ( letrec ( (var1 exp1) … (varn expn)) exp )
var1,…,varn are visible in exp1 to expn in addition to exp. (letrec ( (x (lambda() y)) (y (lambda() x)) ) x ;Value 1: #[compound-procedure 1 x] RACKET => #<procedure:x> (letrec ( (x (lambda() y) (y (lambda() x) ) ((((((x)))))) ) ;Value 2: #[compound-procedure 2 x] (letrec ((x (lambda()y)) (y (lambda () x))) (x)) ;Value 3: #[compound-procedure 3 y] (letrec ( (x (lambda() y)) (y (lambda() x)) ) x Similar to: (define x (lambda() y) ) (define y (lambda() x) ) ((x)) #<procedure:x> > (letrec ( (x (lambda() y)) (x) #<procedure:y> > cs7100(Prasad) L3Scheme
29
letrec-construct (letrec ( (f (lambda(n) (if (zero? n) 1 (f (- n 1)) )) ) ) (f 5) ) 1 (letrec ( ( f (lambda () g) ) ( g ) ) ( f ) 2 (letrec ( (f (lambda(n) (if (zero? n) 1 (f (- 1 n)) )) ) ) (f 5) ) INFINITE LOOP cs7100(Prasad) L3Scheme
30
boolean connectives (or test1 test2 … testn) (and test1 test2 … testn)
or and and are not Scheme procedures. They use short circuit evaluation rather than traditional call-by-value. cs7100(Prasad) L3Scheme
31
Branching constructs (cond (test1 exp1) (test2 exp2) … (testn expn)
(else exp) ) (case key (keylist1 exp1) (keylist2 exp2) … (keylistn expn) (else exp) ) (case (* 2 3) (( ) 'prime) (( ) 'composite)) ===> composite (case (car '(c d)) ((a) 'a) ((b) 'b)) ===> unspecified ((a e i o u) 'vowel) ((w y) 'semivowel) (else 'consonant)) ===> consonant cs7100(Prasad) L3Scheme
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.