Presentation is loading. Please wait.

Presentation is loading. Please wait.

Émilie Morin Literature Meeting January 18th 2017

Similar presentations


Presentation on theme: "Émilie Morin Literature Meeting January 18th 2017"— Presentation transcript:

1 Émilie Morin Literature Meeting January 18th 2017

2 John F. Hartwig Academic Background AB Princeton University 1986
PhD (R. G. Bergman + R. A. Anderson) U.C. Berkeley 1990 PDF (S. J. Lippard) MIT Career Professor (assistant, associate, full) Yale University Irénée P. Dupont Professor Yale University Kenneth L. Rinehart Jr. Professor University of Illinois Henry Rapoport Professor U. C. Berkeley now Research Interests Organometallic Chemistry Catalysis with transition metal complexes Mechanistic Studies Cross-Coupling Chemistry

3 John F. Hartwig Famous Reactions Buchwald-Hartwig Reaction
C-H Borylation (40 papers) Publications: Since 2014, published 53 papers (363 in total) 2 Nature 1 Science 26 JACS 14 ACIE C-H borylation of alkanes first Ishiyama, T.; Takagi, J.; Hartwig, J. F.;Miyaura, N.  Angew. Chem. Int. Ed. 2002, 41, 3056. Hartwig, J.F. Acc. Chem. Res. 2012, 45, 864.

4 Pinjing Zhao Academic Background BS Beijing University 1997
PhD (D.B. Collum) Cornell University 2004 PDF (J. F. Hartwig) Yale University PDF (J. F. Hartwig) University of Illinois Career Associate Professor North Dakota State University present Research Interests Organometallic Chemistry Homogeneous Catalysis (Rh, Ru, Ni) Publications: Since 2009, published 13 papers 1 Nat. Chem. 1 Nat. Comm. 3 Angew. Chem. Int. Ed. + 1 Angew. Chem. 3 J. Am. Chem. Soc. 1 Chem. Eur. J. C-H activation, Decarboxylation (but oxydative coupling on the COOH position), alkynes/alkenes, hydroamination, NHC + 11 abstracts of papers of the ACS

5 Hydroarylation of Alkynes
Definition: Addition of an aryl group and a hydrogen across an alkyne to form a conjugated aromatic alkene. Advantages of C-H Functionalization Atom-economical Less waste Fewer reaction steps Two Mechanistic Pathways Alkyne Activation Arene Activation Kitamura, T. Eur. J. Org. Chem. 2009, 1111.

6 Alkyne Activation Friedel-Crafts Alkenylation Mechanism: SEAr
Disadvantages Scope limited to electron-rich arenes No regioselectivity on the arene Ionic liquid = stabilize the unstable vinyl cationic intermediate in highly polar ionic liquid Faster, better yields, electron-deficient alkynes, Nevado, C.; Echavarren, A . M. Synthesis, 2005, 167. ; Li, R.; Wang, S. R.; Lu, W. Org. Lett., 2007, 9, 2219. Song, C. E.; Jung, D.; Choung, S. Y.; Roh, E. J.; Lee, S. Angew. Chem. Int. Ed. 2004, 43,

7 Arene Activation Directed ortho-Metalation
Accelerates the C-H activation Controls the regiochemistry First Example: Lewis and Smith First Catalytic Example: Murai Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728. Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Chem Lett. 1995,

8 Arene Activation C-H Functionalization Directing Group Strategies
Non-Removable DG Scope limited Removable DG Requires an additional step to remove or modify the DG Traceless DG One-pot functionalization and removal of DG Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014, 43, 6906.

9 Arene Activation Aliphatic alkynes not tolerated
Active AgSbF6 induces isomerization into the thermodinamically more stable Z-isomer. Aliphatic alkynes not tolerated Min, M.; Kim D.; Hong, S. Chem. Commun. 2014, 50, 8028.

10 Protodecarboxylation
Ecological Advantages Carboxylic acids are easily available (often from renewable sources) Decarboxylation only produces CO2 as by-product Protodecarboxylation Slow reaction Requires high temperatures Ortho substituents are often needed Stoichiometric amounts of a Cu or Ag salt are used Gooßen Methodology with catalytic amount of Cu Rodríguez, N.; Gooßen, L. J. Chem. Soc. Rev. 2001, 40, 5030. Gooßen, L. J.; Thiel, W. R.; Rodríguez, N.; Linder, C.; Melzer, B. Adv. Synth. Catal. 2007, 349,

11 Tandem sequences Tandem Arylation/Protodecarboxylation
Requires ortho-substituents (EWG or EDG) Produces a meta-selective C-H arylation Tandem Alkoxylation/Protodecarboxylation Alkoxylation catalyzed by Cu Protodecarboxylation catalyzed by Ag Cornella, J.; Righi, M.; Larrosa, I. Angew. Chem. Int. Ed. 2011, 50, 9429. Bhadra, S.; Dzik, W. I.; Gooßen, L. J. Angew. Chem. Int. Ed. 2013, 52, 2959.

12 Tandem sequences Aliphatic alkynes not tolerated
Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.

13 This Paper Remaining Challenges
One-pot removal of directing group Access to meta- and para-substituted alkenylarenes Great regio- and stereoselectivities Aliphatic alkynes tolerance Chemoselective reaction Mild conditions (temperature, stoechiometric Cu and Ag salts) Strategy: Use of carboxylic acids as directing group for hydroarylation and use of the alkene just formed as an activating unit for the decarboxylation. Mild and redox-neutral conditions to achieve a large substrate scope Zhang, J. Shrestha, R.; Hartwig, J. F.; Zhao, P. Nat. Chem. 2016, 8, 1144.

14 Ruthenium (II) Catalyst
Hydroarylation Decarboxylation Also works with arenes that do not bear an ortho substituant, but the yields are lower. Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. Org. Lett. 2012, 14, 2058. Shi, X.-Y.; Dong, X.-F.; Fan, J.; Liu, K.-Y.; Wei, J.-F.; Li, C.-J. Sci. China. Chem., 2015, 58, 1286.

15 Optimization Precatalyst (mol%) T° Ligand Additive Solvent 3a 4a 5a 6a
[Ru(p-cymene)Cl2]2 (5) 100 - NaOAc PhMe 55 4 2 3 PCy3 18 5 < 2 [Ru(p-cymene)(OAc)2]2 (5) 16 [Ru(p-cymene)(OAc)2]2 (10) 66 80 25 mesitylene 27 1,4-dioxane 15 heptane 17 mixed 65

16 Mechanism Zhang, J. Shrestha, R.; Hartwig, J. F.; Zhao, P. Nat. Chem. 2016, 8, 1144.

17 Mechanism : By-Products Formation
Isocoumarin Control Experiments 50 mol% PivOH favored desired product over by-products Confirm protonation steps in Path A Synthesis of a Ru(0) complex with naphtalene ligand that does not promote the reaction Path C leads to catalyst deactivation Naphtalene Zhang, J. Shrestha, R.; Hartwig, J. F.; Zhao, P. Nat. Chem. 2016, 8, 1144.

18 Scope: para-Benzoic acids
Naphtalene 6 is the major by-product Deactivation of catalyst when forming this by-product explains the low yields Zhang, J. Shrestha, R.; Hartwig, J. F.; Zhao, P. Nat. Chem. 2016, 8, 1144.

19 Scope: Benzoic acids Ortho Substituents Meta Substituents (48 h)
No ortho-products detected No ipso-selective decarboxylation Confirm that decarboxylation is not facilitated by steric effects Coordination on alkene is necessary for decarboxylation Zhang, J. Shrestha, R.; Hartwig, J. F.; Zhao, P. Nat. Chem. 2016, 8, 1144.

20 Scope: Alkynes Symmetrical alkynes Unsymmetrical alkynes
Ortho-substituent gives higher yield by preventing formation of naphtalene by-product Unsymmetrical alkynes Terminal alkynes not tolerated (unproductive Ru(II) complexe) Simple alkyl chains (Me, Et, n-Bu) are less reactive 20 mol% Cu(OAc)2 is added to regenerate the catalyst Ru(0) into Ru(II) 2-(MeO)Ph : higher yields pcq steric effects prevent the formation of by-product 6 Zhang, J. Shrestha, R.; Hartwig, J. F.; Zhao, P. Nat. Chem. 2016, 8, 1144.

21 Conclusion Selling Points Weaknesses
Traceless directing group removed in a one-pot sequence Broad scope (mild conditions, no ortho-substituent needed) High stereoselective syn hydroarylation Controlled chemo- and regioselectivity Commercially available benzoic acids and less expensive than aryl halides Weaknesses Uncompatible with terminal alkynes More difficult with alkyls and electron-deficient substrates Glovebox chemistry Zhang, J. Shrestha, R.; Hartwig, J. F.; Zhao, P. Nat. Chem. 2016, 8, 1144.

22 While this paper was submitted…
Hydroarylation with CO2H as DG One-pot Hydroarylation/Decarboxylation Alkyl-substituted alkynes do not allow high-yielding coupling Those conditions do not promote only decarboxylation on alkenyl-arenes Huang, L.; Biafora, A.; Zhang, G.; Bragoni, V.; Gooßen, L. J. Angew. Chem. Int. Ed. 2016, 55, 6933.

23 Thank you!


Download ppt "Émilie Morin Literature Meeting January 18th 2017"

Similar presentations


Ads by Google