Presentation is loading. Please wait.

Presentation is loading. Please wait.

Integration Stretch Answer: k=3 for all problems!

Similar presentations


Presentation on theme: "Integration Stretch Answer: k=3 for all problems!"β€” Presentation transcript:

1 Integration Stretch Answer: k=3 for all problems!
Pupils need to work out the equation of the starting parabola (easy). Then define a stretch factor, k, say and find where the two parabolas intersect. Integrate to get the area between the parabolas and equate this to the area given to determine the stretch factor. Print 4 to a page and cut up to give individual challenges to each pupil.

2 Note to teacher Pupils can get bogged down with the algebra so you can use the spreadsheet to show some of the steps that their working should include. Update the yellow cells with their parameters.

3 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 16 What stretch factor, k, gives the area stated? 32 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 4

4 General Solution Find the π‘₯ -coordinate of point A:
Let 𝒂,𝟎 be the coordinates for the minimum point of the originating parabola and 𝒉 and π’Œ be the stretch factors in the π‘¦βˆ’ and π‘₯βˆ’ directions, respectively. Solve: β„Ž π‘₯βˆ’π‘Ž 2 = β„Ž π‘₯ π‘˜ βˆ’π‘Ž 2 π‘₯ 2 βˆ’2π‘Žπ‘₯+ π‘Ž 2 = π‘₯ π‘˜ 2 βˆ’2 π‘Ž π‘˜ π‘₯+ π‘Ž 2 1βˆ’ 1 π‘˜ π‘₯ 2 βˆ’2π‘Ž 1βˆ’ 1 π‘˜ π‘₯=0 π‘˜ 2 βˆ’1 π‘˜ 2 π‘₯=2π‘Ž π‘˜βˆ’1 π‘˜ (ignoring π‘₯=0) π‘₯=2π‘Ž π‘˜βˆ’1 π‘˜ π‘˜ 2 π‘˜ 2 βˆ’1 So, π‘₯=2π‘Ž π‘˜ π‘˜+1 and π‘₯=0 are the π‘₯- coordinates of A and B, respectively.

5 Area = 0 2π‘Ž π‘˜ π‘˜+1 β„Ž π‘₯ π‘˜ βˆ’π‘Ž 2 βˆ’β„Ž π‘₯βˆ’π‘Ž 2 β…†π‘₯ =β„Ž 0 2π‘Ž π‘˜ π‘˜+1 1 π‘˜ 2 βˆ’1 π‘₯ 2 βˆ’2π‘Ž 1 π‘˜ βˆ’1 π‘₯ β…†π‘₯ =β„Ž 1βˆ’ π‘˜ 2 π‘˜ 2 0 2π‘Ž π‘˜ π‘˜+1 π‘₯ 2 β…†π‘₯ βˆ’2β„Žπ‘Ž 1βˆ’π‘˜ π‘˜ 0 2π‘Ž π‘˜ π‘˜+1 π‘₯β…†π‘₯ =β„Ž 1βˆ’ π‘˜ 2 π‘˜ 2 8 π‘Ž 3 3 π‘˜ π‘˜+1 3 βˆ’2β„Žπ‘Ž 1βˆ’π‘˜ π‘˜ 4 π‘Ž 2 2 π‘˜ π‘˜+1 2 = β„Ž 1βˆ’π‘˜ 8 π‘Ž 3 π‘˜ 3 π‘˜+1 2 βˆ’ 4β„Ž π‘Ž 3 1βˆ’π‘˜ π‘˜ π‘˜+1 2 = β„Žπ‘˜ 1βˆ’π‘˜ 4 π‘Ž 3 π‘˜ βˆ’1 = β„Žπ‘˜ π‘˜βˆ’1 π‘˜+1 2 4π‘Ž 3 3

6 Area, 𝐼 = β„Žπ‘˜ π‘˜βˆ’1 π‘˜+1 2 4π‘Ž 3 3 Make π‘˜ the subject: 3𝐼 π‘˜+1 2 =β„Žπ‘˜ π‘˜βˆ’1 4 π‘Ž 3 3𝐼 π‘˜ 2 +2π‘˜+1 =4β„Ž π‘Ž 3 π‘˜ 2 βˆ’π‘˜ 0= 4β„Ž π‘Ž 3 βˆ’3𝐼 π‘˜ 2 βˆ’ 4β„Ž π‘Ž 3 +6𝐼 βˆ’3𝐼 π‘˜= 4β„Ž π‘Ž 3 +6𝐼 Β± 4β„Ž π‘Ž 3 +6𝐼 β„Ž π‘Ž 3 βˆ’3𝐼 3𝐼 2 4β„Ž π‘Ž 3 βˆ’3𝐼 π‘˜= 4β„Ž π‘Ž 3 +6𝐼 Β± 16 β„Ž 2 π‘Ž 6 +48β„ŽπΌ π‘Ž 𝐼 2 +48β„ŽπΌ π‘Ž 3 βˆ’36 𝐼 2 2 4β„Ž π‘Ž 3 βˆ’3𝐼 π‘˜= 4β„Ž π‘Ž 3 +6𝐼 Β± 16 β„Ž 2 π‘Ž 6 +96β„ŽπΌ π‘Ž 3 2 4β„Ž π‘Ž 3 βˆ’3𝐼 π‘˜= 4β„Ž π‘Ž 3 +6𝐼 Β±4π‘Ž β„Ž 2 π‘Ž 4 +6β„ŽπΌπ‘Ž 2 4β„Ž π‘Ž 3 βˆ’3𝐼 π‘˜= 2β„Ž π‘Ž 3 +3𝐼 Β±2π‘Ž β„Ž 2 π‘Ž 4 +6β„ŽπΌπ‘Ž 4β„Ž π‘Ž 3 βˆ’3𝐼

7 0= 4β„Ž π‘Ž 3 βˆ’3𝐼 π‘˜ 2 βˆ’ 4β„Ž π‘Ž 3 +6𝐼 βˆ’3𝐼 All of your situations boil down to: 5 π‘˜ 2 βˆ’14π‘˜βˆ’3=0 5π‘˜+1 π‘˜βˆ’3 =0 π‘˜=3 and π‘˜=βˆ’ 1 5 How can you explain the negative value? In that case 𝑓(π‘₯) is above 𝑔(π‘₯) but you don’t get a negative answer. (Hint: look at the limits)

8 Resources

9 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 16 What stretch factor, k, gives the area stated? 32 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 4 SIC_14

10 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 4 What stretch factor, k, gives the area stated? 4 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

11 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 36 What stretch factor, k, gives the area stated? 108 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 6 SIC_14

12 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 20 What stretch factor, k, gives the area stated? 20 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

13 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 4 What stretch factor, k, gives the area stated? 8 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 4 SIC_14

14 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 8 What stretch factor, k, gives the area stated? 8 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

15 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 6 What stretch factor, k, gives the area stated? 18 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 6 SIC_14

16 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 2 What stretch factor, k, gives the area stated? 2 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

17 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 8 What stretch factor, k, gives the area stated? 16 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 4 SIC_14

18 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 12 What stretch factor, k, gives the area stated? 12 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

19 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 3 What stretch factor, k, gives the area stated? 9 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 6 SIC_14

20 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 1 What stretch factor, k, gives the area stated? 1 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

21 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 32 What stretch factor, k, gives the area stated? 64 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 4 SIC_14

22 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 16 What stretch factor, k, gives the area stated? 16 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

23 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 1 What stretch factor, k, gives the area stated? 3 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 6 SIC_14

24 What stretch factor, k, gives the area stated?
y NOT TO SCALE f (x), a parabola 6 What stretch factor, k, gives the area stated? 6 defined by a stretch, parallel to x-axis, of f (x) g(x) , x 2 SIC_14

25 0= 4β„Ž π‘Ž 3 βˆ’3𝐼 π‘˜ 2 βˆ’ 4β„Ž π‘Ž 3 +6𝐼 βˆ’3𝐼 Let 𝐼 β€² = 𝐼 β„Ž (this ratio is constant for each value of 𝒂 used). 0= 4 π‘Ž 3 βˆ’3 𝐼 β€² π‘˜ 2 βˆ’ 4 π‘Ž 3 +6 𝐼 β€² βˆ’3 𝐼 β€² All of the problems given boil down to: You should have achieved one of these quadratics: For π‘Ž=2 , 𝐼 β€² =4 20 π‘˜ 2 βˆ’56π‘˜βˆ’12=0 For π‘Ž=4 , 𝐼 β€² = π‘˜ 2 βˆ’448π‘˜βˆ’96=0 For π‘Ž=6 , 𝐼 β€² = π‘˜ 2 βˆ’1512π‘˜βˆ’324=0 Which all simplify to: 5 π‘˜ 2 βˆ’14π‘˜βˆ’3=0 5π‘˜+1 π‘˜βˆ’3 =0 π‘˜=3 and π‘˜=βˆ’ 1 5


Download ppt "Integration Stretch Answer: k=3 for all problems!"

Similar presentations


Ads by Google