Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fig. 9-1.

Similar presentations


Presentation on theme: "Fig. 9-1."— Presentation transcript:

1 Fig. 9-1

2 Organic molecules Cellular respiration in mitochondria
Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts Organic molecules CO2 + H2O + O2 Cellular respiration in mitochondria ATP ATP powers most cellular work Heat energy

3 becomes oxidized (loses electron) becomes reduced (gains electron)
Fig. 9-UN1 becomes oxidized (loses electron) becomes reduced (gains electron)

4 becomes oxidized becomes reduced
Fig. 9-UN2 becomes oxidized becomes reduced

5 Methane (reducing agent) Oxygen (oxidizing agent)
Fig. 9-3 Reactants Products becomes oxidized becomes reduced Methane (reducing agent) Oxygen (oxidizing agent) Carbon dioxide Water

6 Fig. 9-UN3 becomes oxidized becomes reduced

7 Fig. 9-UN4 Dehydrogenase

8 NADH H+ NAD+ + 2[H] + H+ 2 e– + 2 H+ 2 e– + H+ Dehydrogenase
Fig. 9-4 2 e– + 2 H+ 2 e– + H+ NADH H+ Dehydrogenase Reduction of NAD+ NAD+ + 2[H] + H+ Oxidation of NADH Nicotinamide (reduced form) Nicotinamide (oxidized form)

9 (a) Uncontrolled reaction (b) Cellular respiration
Fig. 9-5 H2 + 1/2 O2 2 H + 1/2 O2 (from food via NADH) Controlled release of energy for synthesis of ATP 2 H e– ATP Explosive release of heat and light energy ATP Electron transport chain Free energy, G Free energy, G ATP 2 e– 1/2 O2 2 H+ H2O H2O (a) Uncontrolled reaction (b) Cellular respiration

10 Electrons carried via NADH ATP Substrate-level phosphorylation
Fig Electrons carried via NADH Glycolysis Glucose Pyruvate Cytosol ATP Substrate-level phosphorylation

11 Electrons carried via NADH Electrons carried via NADH and FADH2
Fig Electrons carried via NADH Electrons carried via NADH and FADH2 Glycolysis Citric acid cycle Glucose Pyruvate Mitochondrion Cytosol ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation

12 Electrons carried via NADH Electrons carried via NADH and FADH2
Fig Electrons carried via NADH Electrons carried via NADH and FADH2 Oxidative phosphorylation: electron transport and chemiosmosis Glycolysis Citric acid cycle Glucose Pyruvate Mitochondrion Cytosol ATP ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation Oxidative phosphorylation

13 Fig. 9-7 Enzyme Enzyme ADP P Substrate + ATP Product

14 Energy investment phase
Fig. 9-8 Energy investment phase Glucose 2 ADP + 2 P 2 ATP used Energy payoff phase 4 ADP + 4 P 4 ATP formed 2 NAD e– + 4 H+ 2 NADH + 2 H+ 2 Pyruvate + 2 H2O Net Glucose 2 Pyruvate + 2 H2O 4 ATP formed – 2 ATP used 2 ATP 2 NAD e– + 4 H+ 2 NADH + 2 H+

15 Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate Fig. 9-9-1 ATP 1 ADP

16 Glucose-6-phosphate 2 Phosphogluco- isomerase Fructose-6-phosphate
Fig Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate Glucose-6-phosphate 2 Phosphoglucoisomerase 2 Phosphogluco- isomerase Fructose-6-phosphate Fructose-6-phosphate

17 Fructose- 1, 6-bisphosphate
Fig Glucose ATP 1 1 Hexokinase ADP Fructose-6-phosphate Glucose-6-phosphate 2 2 Phosphoglucoisomerase ATP 3 Phosphofructo- kinase Fructose-6-phosphate ATP 3 3 ADP Phosphofructokinase ADP Fructose- 1, 6-bisphosphate Fructose- 1, 6-bisphosphate

18 Aldolase Isomerase Fructose- 1, 6-bisphosphate 4 5 Dihydroxyacetone
Fig Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate 2 Phosphoglucoisomerase Fructose- 1, 6-bisphosphate 4 Fructose-6-phosphate Aldolase ATP 3 Phosphofructokinase ADP 5 Isomerase Fructose- 1, 6-bisphosphate 4 Aldolase 5 Isomerase Dihydroxyacetone phosphate Glyceraldehyde- 3-phosphate Dihydroxyacetone phosphate Glyceraldehyde- 3-phosphate

19 Glyceraldehyde- 3-phosphate
Fig 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 2 1, 3-Bisphosphoglycerate Glyceraldehyde- 3-phosphate 2 NAD+ 6 Triose phosphate dehydrogenase 2 P 2 NADH i + 2 H+ 2 1, 3-Bisphosphoglycerate

20 2 2 ADP 2 ATP 2 3-Phosphoglycerate 1, 3-Bisphosphoglycerate 7
Fig 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 1, 3-Bisphosphoglycerate 2 ADP 2 3-Phosphoglycerate 7 Phosphoglycero- kinase 2 ATP 2 3-Phosphoglycerate

21 2 3-Phosphoglycerate 8 Phosphoglycero- mutase 2 2-Phosphoglycerate
Fig 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 3-Phosphoglycerate 2 3-Phosphoglycerate 8 Phosphoglyceromutase 8 Phosphoglycero- mutase 2 2-Phosphoglycerate 2 2-Phosphoglycerate

22 2 2-Phosphoglycerate Enolase 2 H2O 2 Phosphoenolpyruvate 9 Fig. 9-9-8
2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 2-Phosphoglycerate 2 3-Phosphoglycerate 8 Phosphoglyceromutase 9 Enolase 2 H2O 2 2-Phosphoglycerate 9 Enolase 2 H2O 2 Phosphoenolpyruvate 2 Phosphoenolpyruvate

23 2 Phosphoenolpyruvate 2 ADP 10 Pyruvate kinase 2 ATP 2 Pyruvate
Fig 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 Phosphoenolpyruvate 2 ADP 2 3-Phosphoglycerate 8 10 Phosphoglyceromutase Pyruvate kinase 2 ATP 2 2-Phosphoglycerate 9 Enolase 2 H2O 2 Phosphoenolpyruvate 2 ADP 10 Pyruvate kinase 2 ATP 2 Pyruvate 2 Pyruvate

24 CYTOSOL MITOCHONDRION NAD+ NADH + H+ 2 1 3 Acetyl CoA Pyruvate
Fig. 9-10 CYTOSOL MITOCHONDRION NAD+ NADH + H+ 2 1 3 Acetyl CoA Pyruvate Coenzyme A CO2 Transport protein

25 Pyruvate CO2 NAD+ CoA NADH + H+ Acetyl CoA CoA CoA Citric acid cycle 2
Fig. 9-11 Pyruvate CO2 NAD+ CoA NADH + H+ Acetyl CoA CoA CoA Citric acid cycle 2 CO2 FADH2 3 NAD+ FAD 3 NADH + 3 H+ ADP + P i ATP

26 Fig Acetyl CoA CoA—SH 1 Oxaloacetate Citrate Citric acid cycle

27 Fig. 9-12-2 Acetyl CoA Oxaloacetate Citrate Isocitrate Citric acid
CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate Citric acid cycle

28 Fig. 9-12-3 Acetyl CoA Oxaloacetate Citrate Isocitrate Citric acid
CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 -Keto- glutarate

29 Citric acid cycle Succinyl CoA
Fig Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 CoA—SH -Keto- glutarate 4 CO2 NAD+ NADH Succinyl CoA + H+

30 Citric acid cycle Succinyl CoA
Fig Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 CoA—SH -Keto- glutarate 4 CoA—SH 5 CO2 NAD+ Succinate P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

31 Citric acid cycle Succinyl CoA
Fig Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 Fumarate CoA—SH -Keto- glutarate 6 4 CoA—SH FADH2 5 CO2 NAD+ FAD Succinate P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

32 Citric acid cycle Succinyl CoA
Fig Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Malate Citrate Isocitrate NAD+ Citric acid cycle NADH 3 7 + H+ H2O CO2 Fumarate CoA—SH -Keto- glutarate 6 4 CoA—SH FADH2 5 CO2 NAD+ FAD Succinate P P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

33 Citric acid cycle Succinyl CoA
Fig Acetyl CoA CoA—SH NADH +H+ 1 H2O NAD+ 8 Oxaloacetate 2 Malate Citrate Isocitrate NAD+ Citric acid cycle NADH 3 7 + H+ H2O CO2 Fumarate CoA—SH -Keto- glutarate 4 6 CoA—SH FADH2 5 CO2 NAD+ FAD Succinate P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

34 Fig. 9-13 NADH 50 2 e– NAD+ FADH2 2 e– FAD Multiprotein complexes  40
FMN FAD  Fe•S Fe•S Q  Cyt b Fe•S 30 Cyt c1 IV Free energy (G) relative to O2 (kcal/mol) Cyt c Cyt a Cyt a3 20 e– 10 2 (from NADH or FADH2) 2 H+ + 1/2 O2 H2O

35 INTERMEMBRANE SPACE H+ Stator Rotor Internal rod Cata- lytic knob ADP
Fig. 9-14 INTERMEMBRANE SPACE H+ Stator Rotor Internal rod Cata- lytic knob ADP + P ATP i MITOCHONDRIAL MATRIX

36 Number of photons detected (103)
Fig. 9-15 EXPERIMENT Magnetic bead Electromagnet Internal rod Sample Catalytic knob Nickel plate RESULTS Rotation in one direction Rotation in opposite direction No rotation 30 Number of photons detected (103) 25 20 Sequential trials

37 EXPERIMENT Magnetic bead Electromagnet Internal rod Sample Catalytic
Fig. 9-15a EXPERIMENT Magnetic bead Electromagnet Internal rod Sample Catalytic knob Nickel plate

38 RESULTS Rotation in one direction Rotation in opposite direction
Fig. 9-15b RESULTS Rotation in one direction Rotation in opposite direction No rotation 30 Number of photons detected (x 103) 25 20 Sequential trials

39 Electron transport chain 2 Chemiosmosis
Fig. 9-16 H+ H+ H+ H+ Protein complex of electron carriers Cyt c V Q  ATP synthase  2 H+ + 1/2O2 H2O FADH2 FAD NADH NAD+ ADP + P ATP i (carrying electrons from food) H+ 1 Electron transport chain 2 Chemiosmosis Oxidative phosphorylation

40 Fig. 9-17 Citric acid cycle CYTOSOL Electron shuttles span membrane
MITOCHONDRION 2 NADH or 2 FADH2 2 NADH 2 NADH 6 NADH 2 FADH2 Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis 2 Pyruvate 2 Acetyl CoA Citric acid cycle Glucose + 2 ATP + 2 ATP + about 32 or 34 ATP About 36 or 38 ATP Maximum per glucose:

41 Fig. 9-18 2 ADP + 2 Pi 2 ATP Glucose Glycolysis 2 Pyruvate 2 NAD+
2 NADH 2 CO2 + 2 H+ 2 Ethanol 2 Acetaldehyde (a) Alcohol fermentation 2 ADP + 2 Pi 2 ATP Glucose Glycolysis 2 NAD+ 2 NADH + 2 H+ 2 Pyruvate 2 Lactate (b) Lactic acid fermentation

42 (a) Alcohol fermentation
Fig. 9-18a 2 ADP + 2 P 2 ATP i Glucose Glycolysis 2 Pyruvate 2 NAD+ 2 NADH 2 CO2 + 2 H+ 2 Acetaldehyde 2 Ethanol (a) Alcohol fermentation

43 (b) Lactic acid fermentation
Fig. 9-18b 2 ADP + 2 P 2 ATP i Glucose Glycolysis 2 NAD+ 2 NADH + 2 H+ 2 Pyruvate 2 Lactate (b) Lactic acid fermentation

44 Ethanol or lactate Citric acid cycle
Fig. 9-19 Glucose Glycolysis CYTOSOL Pyruvate O2 present: Aerobic cellular respiration No O2 present: Fermentation MITOCHONDRION Ethanol or lactate Acetyl CoA Citric acid cycle

45 Citric acid cycle Oxidative phosphorylation
Fig. 9-20 Proteins Carbohydrates Fats Amino acids Sugars Glycerol Fatty acids Glycolysis Glucose Glyceraldehyde-3- P NH3 Pyruvate Acetyl CoA Citric acid cycle Oxidative phosphorylation

46 Fig. 9-21 Glucose AMP Glycolysis Fructose-6-phosphate Stimulates +
Phosphofructokinase Fructose-1,6-bisphosphate Inhibits Inhibits Pyruvate ATP Citrate Acetyl CoA Citric acid cycle Oxidative phosphorylation

47 Fig. 9-UN5 Inputs Outputs 2 ATP Glycolysis + 2 NADH Glucose 2 Pyruvate

48 Inputs Outputs S—CoA 2 ATP C O CH3 2 Acetyl CoA 6 NADH O C COO
Fig. 9-UN6 Inputs Outputs S—CoA 2 ATP C O CH3 2 Acetyl CoA 6 NADH O C COO Citric acid cycle CH2 2 FADH2 COO 2 Oxaloacetate

49 INTER- MEMBRANE SPACE H+ ATP synthase ADP + P ATP MITO- CHONDRIAL
Fig. 9-UN7 INTER- MEMBRANE SPACE H+ ATP synthase ADP + P ATP i MITO- CHONDRIAL MATRIX H+

50 Fig. 9-UN8 across membrane pH difference Time

51 Fig. 9-UN9


Download ppt "Fig. 9-1."

Similar presentations


Ads by Google