Download presentation
Presentation is loading. Please wait.
Published bySpencer Harrington Modified over 6 years ago
1
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
surface observations Nadège Blond, LISA, Paris, France Henk Eskes, Folkert Boersma, Ronald van der A KNMI, Netherlands Michel van Roozendael, Isabelle De Smedt BIRA-IASB, Belgium
2
Slant column retrieval approach (BIRA-IASB)
DOAS slant column: • "raw" L1, v 4.02 L1, v 5.01 L1 • Non-linear least-squares inversion (Marquardt-Levenberg) • Wavelength window • NO2 243K (Bogumil), O3 (Bogumil), O2-O2, H2O • 2nd order polynomial • Undersampling cross section • Ring (Vountas) • Offset correction based on measurement over Indian Ocean
3
Combined retrieval - modelling - assimilation approach to SCIA NO2
Careful treatment needed for: • Clouds • Surface albedo • Profile shape • Aerosol
4
Slant to vertical column retrieval approach (KNMI)
Air-mass factor calculation: • Temperature correction (NO2 cross section) • TM3 / TM4 (tropospheric) CTM • Assimilation of slant columns -> stratospheric "background" • Fresco cloud fraction and cloud top pressure • TOMS / GOME combined albedo map (Herman, Koelemeijer) • DAK RTM height-dependent AMF lookup table • Tropospheric AMF based on TM profile shape, clouds Product: • Detailed error estimates • Averaging kernels
5
Validation results (ACVE-2), stratosphere
J. C. Lambert NO2 products: • SCIA processor • IUP • SAO • BIRA-IASB • Heidelberg
6
Combined retrieval - modelling - assimilation approach
to GOME NO2
7
Chimère model Developed in France R. Vautard, H. Schmidt, L. Menut, M. Beekman, N. Blond, ... ) Operational air-quality forecasts: Model ingredients: • MELCHIOR chemistry (82 species, 333 reactions) • EMEP emissions • ECMWF meteorological analyses • 15 vertical layers, surface hPa • Boundary conditions from MOZART monthly-mean climatology
8
Emissions
9
Intercomparisons Chimère, SCIA and surface observations
Motivation: • Lack of profile observations of NO2 for validation purposes: use model as intermediate for indirect validation study Approach: • Space-time collocation of Chimère fields to individual SCIA pixels • Application of averaging kernels: Simulated SCIA-equiv column = kernel vector • model NO2 profile • One year of SCIA data, 2003; Cloud free (cloud radiance < 50%) Advantages: • Compare model-SCIA under exactly same conditions (e.g. cloud free) • Comparison independent of profile shape assumptions in the retrieval
10
Chimère and surface observations (RIVM, NL)
Netherlands: (rural stations) Bias 0.1 ppb RMS 7.2 ppb Correl. 0.66
11
SCIAMACHY vs. Chimère: yearly mean
Yearly-mean bias = molec cm-2, RMS 2.9, correl.coeff. 0.73 Cloud-free pixels
12
SCIAMACHY vs. Chimère: 27 Feb 2004
13
SCIAMACHY vs. Chimère: 28 Mar 2004
14
SCIAMACHY vs. Chimère: 16 April 2004
15
SCIAMACHY vs. Chimère: 16 Sep 2004
16
Synergy: Surface - Chimère - SCIAMACHY
17
Conclusions NO2 comparisons
SCIAMACHY - Chimère - surface • Yearly mean: - very small bias SCIA - Chimère and Chimère - surface - Correlation coefficients 0.7 typically • SCIA and Chimère resolution comparable • Extended NO2 plumes compare well • Details show differences: - Seasonality (winter Chimère higher) - Individual days - Distribution - Amount of detail
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.