Download presentation
Presentation is loading. Please wait.
1
Complex Eigenvalues kshum ENGG2420B
2
Steps in calculating eigenvalues and eigenvectors
Given a matrix M. Find the characteristic polynomial. Find the roots of the characteristic polynomial. For each eigenvalue of M, find the non-zero vectors v such that M v = v. kshum ENGG2420B
3
Example: flip A linear transformation L(x,y) given by: L(x,y) = (x, -y) x x y – y kshum ENGG2420B
4
Example: shear action A linear transformation given by L(x,y) = (x+0.25y, y) x x y y y kshum ENGG2420B
5
Repeated eigenvalues, one linearly independent eigenvector
What are the eigenvalues of ? Eigenvectors ? Solve \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 ( k nonzero ) kshum ENGG2420B
6
Example: Expansion L(x,y) = (ax, ay), for some constant a. x ax
y ay kshum ENGG2420B
7
Repeated eigenvalues, two linearly independent eigenvectors
What are the eigenvalues of ? Eigenvectors ? Solve \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 All non-zero vectors are eigenvector. kshum ENGG2420B
8
Example: Rotation Rotation by 90 degrees counter-clockwise: L(x,y) = (– y , x). x – y y x kshum ENGG2420B
9
Eigenvalues = ? No real root
\det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 kshum ENGG2420B
10
Extension to complex vectors and matrix
Given a square matrix A, a non-zero vector v is called an eigenvector of A, if we an find a number , which may be complex, such that This number is the eigenvalue of A corresponding to the eigenvector v. kshum ENGG2420B
11
Complex Eigenvalues \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 kshum ENGG2420B
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.