Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHYTOPLANKTON GROWTH RATES AND CARBON BIOMASS FROM SPACE

Similar presentations


Presentation on theme: "PHYTOPLANKTON GROWTH RATES AND CARBON BIOMASS FROM SPACE"— Presentation transcript:

1 PHYTOPLANKTON GROWTH RATES AND CARBON BIOMASS FROM SPACE
Michael Behrenfeld, Emmanuel Boss, David Siegel, & Don Shea Outline: The ‘Carbon-based’ NPP Approach Global Results Focus: Subtropical Gyre Patterns Field Comparison Productivity Issues Closing References: Behrenfeld, Boss, Siegel, Shea Global Biogeochem. Cycles, 19, /2004GB002299 Winn, Campbell, Christian, Letelier, Hebel, Dore, Fujieki, Karl Global Biogeochem. Cycles 9: Behrenfeld, Boss Deep Sea Research. 50: Behrenfeld, Prasil, Babin, Bruyant J. Phycology. 40:4-25. Garver, Siegel J. Geophys. Res. 102: 18,607-18,625. NASA Ocean Biology and Biogeochemistry Program

2 Carbon Approach: [Chlorophyll] = f [biomass, light, nutrients,…]
Scattering coefficients covary with particle abundance Scattering coefficients covary with phytoplankton carbon Chlorophyll variations independent of C are an index of changing cellular pigmentation Chl:C can then be used as an index of the rate term Particulate beam attenuation and particle backscattering coefficients reflect changes in particle load Remote sensing ‘inversion’ products: bbp, aph (cDOM) thus a path to carbon biomass & growth rate from space References: Garver, Siegel J. Geophys. Res. 102: 18,607-18,625.

3 Laboratory Chl:C physiology 3 primary factors Light Temperature
Nutrients Chl:Cmax Dunaliella tertiolecta 20 oC Replete nutrients Exponential growth phase Geider (1987) New Phytol. 106: 1-34 16 species = Diatoms = all other species Laws & Bannister (1980) Limnol. Oceanogr. 25: Thalassiosira fluviatilis = NO3 limited cultures = NH4 limited cultures = PO4 limited cultures Chl:C (mg mg-1) Chl:Cmin Light (moles m-2 h-1) Laboratory Chl:Cmax Temperature (oC) Chl:Cmin Low Nutrient stress High Growth rate (div. d-1)

4 References: 28 Regional Bins
NP SP SA NA CP SI NI CA SO L0 L1 L2 L3 L4 SO-all Variance Level Chlorophyll excluded 28 Regional Bins References: Behrenfeld, Boss, Siegel, Shea Global Biogeochem. Cycles, 19, /2004GB002299

5 Laboratory Space References: Chl:C (mg mg-1) Chl:C (mg mg-1) Chl:Cmax
{median r2 = 0.85} Chl:C (mg mg-1) Chl:C (mg mg-1) Light (moles photons m-2 h-1) Laboratory Space Chl:Cmax Chl:Cmax Biogeochem. Cycles, 19, /2004GB002299 Behrenfeld, Boss, Siegel, Shea Global References: Temperature (oC) Chl:Cmin Chl:Cmin Low Nutrient stress High Low Nutrient stress High Growth rate (div. d-1) Temperature (oC)

6 max  f (nuts, temp)  g (light)
Relative frequency Growth rate () = max  f (nuts, temp)  g (light) 2 divisions d-1 Banse (1991) 1 – exp -3light Chl:Csat ( Chl:CN,T-max ) Light Boreal Summer Boreal Winter 0.5 1.0 1.5 2.0 Growth rate (division d-1) References: Behrenfeld, Boss, Siegel, Shea Global Biogeochem. Cycles, 19, /2004GB002299

7 Oligotrophic Oceans North Atlantic South Atlantic North Pacific
1998 1999 2000 2001 2002 Year Chlorophyll Scaled Carbon North Atlantic Chl:C (right axis) South Atlantic North Pacific South Pacific

8 North Pacific: HOT References: Year
Winn, Campbell, Christian, Letelier, Hebel, Dore, Fujieki, Karl Global Biogeochem. Cycles 9: 1998 1999 2000 2001 2002 Year

9 North Pacific & North Atlantic: 14C
HOT Measured Pbopt Measured cp:Chl ratio BATS Sequential Observation References: Behrenfeld, Boss Deep Sea Research. 50:

10 Primary Production …NPP = f [Carbon, Zeu, , g (I0)]… References:
Boreal Winter Chlorophyll-based Carbon-based Boreal Summer Net Primary Production (mg m-2) 1200 800 400 1500 …NPP = f [Carbon, Zeu, , g (I0)]… References: Behrenfeld, Boss, Siegel, Shea Global Biogeochem. Cycles, 19, /2004GB002299

11 Net Primary Production (Pg C month-1)
1998 1999 2000 2001 2002 Year North Atlantic South Atlantic Net Primary Production (Pg C month-1) = Chlorophyll-based estimate (VGPM) = Carbon-based estimate North Pacific South Pacific

12 North Pacific: HOT References: Winn, Campbell, Christian, Letelier,
Hebel, Dore, Fujieki, Karl Global Biogeochem. Cycles 9:

13 DIRECTIONS f (N,T): linear, zero intercept ‘Ek-independent’ variability** PIC (e.g., coccoliths) cDOM vs pigment absorption (10 Pg y-1) Particle size distributions Species-dependent physiology New Remote Sensing…. ** References: Behrenfeld, Prasil, Babin, Bruyant J. Phycology. 40:4-25.

14 Growth Rates, Carbon Biomass,
& Ecosystem Models THURSDAY (SS26; 4:30 pm) Patrick Schultz et al. Investigating the balance between phytoplankton growth and loss from space (SS25; 6:45 pm) Andy Jacobson et al. An inductive ocean ecology model based on satellite observations of phytoplankton carbon biomass.

15 BACKUP

16 28 Regional Bins bbp (m-1) Chlorophyll (mg m-3)
NP SP SA NA CP SI NI CA SO L0 L1 L2 L3 L4 SO-all Variance Level Chlorophyll excluded 28 Regional Bins bbp (m-1) Chlorophyll (mg m-3) ‘physiology domain’ ‘biomass domain’ Intercept = bbp from stable component of the bacterial population C = scalar  (bbp – intercept) = 13,000  (bbp – ) Intercept = m-1 Stramski & Kiefer (1991) Prog. Oceanogr. 28, Cho & Azam (1990) Mar. Ecol. Prog. Ser., 63, Phytoplankton Carbon = 25 – 35% POC Eppley et al. (1992) J. Geophys. Res., 97, DuRand et al. (2001) Deep-Sea Res. II, 48, Gundersen et al. (2001) Deep-Sea Res. II 48,


Download ppt "PHYTOPLANKTON GROWTH RATES AND CARBON BIOMASS FROM SPACE"

Similar presentations


Ads by Google