Presentation is loading. Please wait.

Presentation is loading. Please wait.

Harvesting stored energy

Similar presentations


Presentation on theme: "Harvesting stored energy"— Presentation transcript:

1 Harvesting stored energy
Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules  food digest organic molecules to get… raw materials for synthesis fuels for energy controlled release of energy “burning” fuels in a series of step-by-step enzyme-controlled reactions We eat to take in the fuels to make ATP which will then be used to help us build biomolecules and grow and move and… live! heterotrophs = “fed by others” vs. autotrophs = “self-feeders”

2 Photosynthesis in chloroplasts Cellular respiration in mitochondria
Figure 9.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts  O2 Organic molecules CO2  H2O Cellular respiration in mitochondria Figure 9.2 Energy flow and chemical recycling in ecosystems. ATP powers most cellular work ATP Heat energy

3

4

5 ATP Living economy Fueling the body’s economy Need an energy currency
eat high energy organic molecules food = carbohydrates, lipids, proteins, nucleic acids break them down digest = catabolism capture released energy in a form the cell can use Need an energy currency a way to pass energy around need a short term energy storage molecule ATP Whoa! Hot stuff!

6 ATP Adenosine TriPhosphate nucleotide = adenine + ribose + Pi  AMP
modified nucleotide nucleotide = adenine + ribose + Pi  AMP AMP + Pi  ADP ADP + Pi  ATP adding phosphates is endergonic Marvel at the efficiency of biological systems! Build once = re-use over and over again. Start with a nucleotide and add phosphates to it to make this high energy molecule that drives the work of life. Let’s look at this molecule closer. Think about putting that Pi on the adenosine-ribose ==> EXERGONIC or ENDERGONIC? How efficient! Build once, use many ways high energy bonds

7 How does ATP store energy?
I think he’s a bit unstable… don’t you? P O– O –O P O– O –O P O– O –O AMP ADP ATP Each negative PO4 more difficult to add a lot of stored energy in each bond most energy stored in 3rd Pi 3rd Pi is hardest group to keep bonded to molecule Bonding of negative Pi groups is unstable spring-loaded Pi groups “pop” off easily & release energy Not a happy molecule Add 1st Pi  Kerplunk! Big negatively charged functional group Add 2nd Pi  EASY or DIFFICULT to add? DIFFICULT takes energy to add = same charges repel  Is it STABLE or UNSTABLE? UNSTABLE = 2 negatively charged functional groups not strongly bonded to each other So if it releases Pi  releases ENERGY Add 3rd Pi  MORE or LESS UNSTABLE? MORE = like an unstable currency • Hot stuff! • Doesn’t stick around • Can’t store it up • Dangerous to store = wants to give its Pi to anything Instability of its P bonds makes ATP an excellent energy donor

8 How does ATP transfer energy?
+ ATP ADP ATP  ADP releases energy ∆G = -7.3 kcal/mole Fuel other reactions Phosphorylation released Pi can transfer to other molecules destabilizing the other molecules enzyme that phosphorylates = “kinase” How does ATP transfer energy? By phosphorylating Think of the 3rd Pi as the bad boyfriend ATP tries to dump off on someone else = phosphorylating How does phosphorylating provide energy? Pi is very electronegative. Got lots of OXYGEN!! OXYGEN is very electronegative. Steals e’s from other atoms in the molecule it is bonded to. As e’s fall to electronegative atom, they release energy. Makes the other molecule “unhappy” = unstable. Starts looking for a better partner to bond to. Pi is again the bad boyfriend you want to dump. You’ve got to find someone else to give him away to. You give him away and then bond with someone new that makes you happier (monomers get together). Eventually the bad boyfriend gets dumped and goes off alone into the cytoplasm as a free agent = free Pi.

9 ATP / ADP cycle Can’t store ATP ATP
good energy donor, not good energy storage too reactive transfers Pi too easily only short term energy storage carbohydrates & fats are long term energy storage ATP cellular respiration 7.3 kcal/mole ADP Pi + A working muscle recycles over 10 million ATPs per second Whoa! Pass me the glucose (and O2)!

10 How do we harvest energy from fuels?
Digest large molecules into smaller ones break bonds & move electrons from one molecule to another as electrons move they “carry energy” with them that energy is stored in another bond, released as heat or harvested to make ATP • They are called oxidation reactions because it reflects the fact that in biological systems oxygen, which attracts electrons strongly, is the most common electron acceptor. • Oxidation & reduction reactions always occur together therefore they are referred to as “redox reactions”. • As electrons move from one atom to another they move farther away from the nucleus of the atom and therefore are at a higher potential energy state. The reduced form of a molecule has a higher level of energy than the oxidized form of a molecule. • The ability to store energy in molecules by transferring electrons to them is called reducing power, and is a basic property of living systems. loses e- gains e- oxidized reduced + + e- e- e- oxidation reduction redox

11

12 Oxidation & reduction Oxidation Reduction  adding O removing H
loss of electrons releases energy exergonic Reduction removing O adding H gain of electrons stores energy endergonic C6H12O6 6O2 6CO2 6H2O ATP + oxidation reduction

13 Moving electrons in respiration
Electron carriers move electrons by shuttling H atoms around NAD+  NADH (reduced) FAD+2  FADH2 (reduced) P O– O –O C NH2 N+ H adenine ribose sugar phosphates NAD+ nicotinamide Vitamin B3 niacin NADH P O– O –O C NH2 N+ H H How efficient! Build once, use many ways + H reduction Nicotinamide adenine dinucleotide (NAD) — and its relative nicotinamide adenine dinucleotide phosphate (NADP) which you will meet in photosynthesis — are two of the most important coenzymes in the cell. In cells, most oxidations are accomplished by the removal of hydrogen atoms. Both of these coenzymes play crucial roles in this. Nicotinamide is also known as Vitamin B3 is believed to cause improvements in energy production due to its role as a precursor of NAD (nicotinamide adenosine dinucleotide), an important molecule involved in energy metabolism. Increasing nicotinamide concentrations increase the available NAD molecules that can take part in energy metabolism, thus increasing the amount of energy available in the cell. Vitamin B3 can be found in various meats, peanuts, and sunflower seeds. Nicotinamide is the biologically active form of niacin (also known as nicotinic acid). FAD is built from riboflavin — also known as Vitamin B2. Riboflavin is a water-soluble vitamin that is found naturally in organ meats (liver, kidney, and heart) and certain plants such as almonds, mushrooms, whole grain, soybeans, and green leafy vegetables. FAD is a coenzyme critical for the metabolism of carbohydrates, fats, and proteins into energy. oxidation carries electrons as a reduced molecule

14 Overview of cellular respiration
4 metabolic stages Anaerobic respiration 1. Glycolysis respiration without O2 in cytosol Aerobic respiration respiration using O2 in mitochondria 2. Pyruvate oxidation 3. Citric Acid (Krebs) cycle 4. Electron transport chain C6H12O6 6O2 ATP 6H2O 6CO2 + (+ heat)

15

16 Oxidative phosphorylation accounts for almost 90% of the ATP generated by cellular respiration (Energy stored in NADH and FADH2 is used to produce ATP) © 2011 Pearson Education, Inc.

17 A smaller amount of ATP is formed in glycolysis and the citric acid cycle by substrate-level phosphorylation For each molecule of glucose degraded to CO2 and water by respiration, the cell makes up to 32 molecules of ATP © 2011 Pearson Education, Inc.

18 Concept 9.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate
Glycolysis (“splitting of sugar”) breaks down glucose into two molecules of pyruvate Glycolysis occurs in the cytoplasm and has two major phases Energy investment phase Energy payoff phase Glycolysis occurs whether or not O2 is present © 2011 Pearson Education, Inc.

19 Glycolysis 6C 3C Breaking down glucose glucose      pyruvate 2x
“glyco – lysis” (splitting sugar) ancient pathway which harvests energy where energy transfer first evolved transfer energy from organic molecules to ATP still is starting point for ALL cellular respiration but it’s inefficient generate only 2 ATP for every 1 glucose occurs in cytosol In the cytosol? Why does that make evolutionary sense? glucose      pyruvate 2x 6C 3C Why does it make sense that this happens in the cytosol? Who evolved first? That’s not enough ATP for me!

20 Evolutionary perspective
Enzymes of glycolysis are “well-conserved” Prokaryotes first cells had no organelles Anaerobic atmosphere life on Earth first evolved without free oxygen (O2) in atmosphere energy had to be captured from organic molecules in absence of O2 Prokaryotes that evolved glycolysis are ancestors of all modern life ALL cells still utilize glycolysis The enzymes of glycolysis are very similar among all organisms. The genes that code for them are highly conserved. They are a good measure for evolutionary studies. Compare eukaryotes, bacteria & archaea using glycolysis enzymes. Bacteria = 3.5 billion years ago glycolysis in cytosol = doesn’t require a membrane-bound organelle O2 = 2.7 billion years ago photosynthetic bacteria / proto-blue-green algae Eukaryotes = 1.5 billion years ago membrane-bound organelles! Processes that all life/organisms share: Protein synthesis Glycolysis DNA replication You mean we’re related? Do I have to invite them over for the holidays?

21 endergonic invest some ATP exergonic harvest a little ATP & a little NADH net yield 2 ATP 2 NADH

22 If you get bored……but you don’t need to know this!!!

23 Concept 9.3: After pyruvate is oxidized, the citric acid cycle completes the energy-yielding oxidation of organic molecules In the presence of O2, pyruvate enters the mitochondrion (in eukaryotic cells) where the oxidation of glucose is completed © 2011 Pearson Education, Inc.

24 The Citric Acid Cycle The citric acid cycle, also called the Krebs cycle, completes the break down of pyruvate to CO2 The cycle oxidizes organic fuel derived from pyruvate, generating 1 ATP, 3 NADH, and 1 FADH2 per turn © 2011 Pearson Education, Inc.

25 Citric acid cycle Acetyl CoA Oxaloacetate Malate Citrate Isocitrate
Figure Acetyl CoA CoA-SH NADH 1 H2O + H NAD Oxaloacetate 8 2 Malate Citrate Isocitrate NAD Citric acid cycle NADH 3 7 + H H2O CO2 Fumarate CoA-SH -Ketoglutarate 4 Figure 9.12 A closer look at the citric acid cycle. 6 CoA-SH 5 FADH2 CO2 NAD FAD Succinate P i NADH GTP GDP Succinyl CoA + H ADP ATP


Download ppt "Harvesting stored energy"

Similar presentations


Ads by Google