Download presentation
Presentation is loading. Please wait.
Published byMargery Osborne Modified over 6 years ago
1
Nuclear Structure Tools for Continuum Spectroscopy
H. Lenske Institut für Theoretische Physik Justus-Liebig-Universität Giessen
2
Continuum Tools, H. Lenske, ECT* 2016
Agenda: Many-body theory in weakly bound nuclei Sampling the continuum „Pairing“ resonances in 10Li Bound states in the continuum (BiC) and Fano-dynamics Summary Continuum Tools, H. Lenske, ECT* 2016
3
Nuclear Many-Body Approaches
Continuum Tools, H. Lenske, ECT* 2016
4
Strategies for Nuclear Spectroscopy
Multi-configuration Shell Model Truncation to a few valence shells Complete np-nh treatment in the valence sector Multi-configuration Mean-Field Model Truncation in ph-number Limited, but unrestricted configuration space
5
Density Functional Theory and Multi-Phonon QRPA Theory
Single Particle Self-Energy: Landau-Migdal Residual Interaction : Choice of wave function:
6
Binding Energies of Sn-Isotopes
DFT and HFB: Binding Energies of Sn-Isotopes N. Tsoneva, H.L., PRC 2008…2016
7
Giessen DFT & QPM: „(D)QPM“ 1-,1+,2+… new Modes of Excitation
PhysRevC (2015) PhysRevC (2014)
8
Dynamical Core Polarization in 11Be
Single Neutron Spectral Distributions [0+ × 1/2+]: 0.79 [2+ × 5/2+]: 0.18 [0+ × 1/2-]: 0.58 [2+ × 3/2-]: 0.28
9
Discretization of the Single Particle Continuum
Continuum Dynamics: Discretization of the Single Particle Continuum
10
Frequently used discretization methods
Expansion into a discrete basis {fnℓ}: eigenfunctions of the 3-D quantum Harmonic oscillator Spherical Bessel functions with infinite well boundary condition at R>>Rturn : jℓ (kR)=0 Binning of the continuum (Austern, CDCC…): Direct integration by e.g. Numerov method: Continuum Tools, H. Lenske, ECT* 2016
11
Discretization of the Single Particle Continuum
Continuum Tools, H. Lenske, ECT* 2016
12
Numerical approach by expansion into a basis
Expand uℓj into a (complete) basis {fnℓ} Choice of (orthonormal) basis: spherical Bessel functions {fnℓ =Anℓxnℓjℓ(xnℓ)} with xnℓ = qnℓr and fnℓ(R)=0 ↔ jℓ(qnℓR)=0 Obtain the knℓj values from the eigenvalue problem The scattering phase shifts are obtained by (c/o the famous Luescher formula of LQCD!) Continuum Tools, H. Lenske, ECT* 2016
13
½+ proton Scattering Phase Shifts on C Isotopes
Continuum Tools, H. Lenske, ECT* 2016
14
½+ Proton Partial Wave Cross Section on C Isotopes
Continuum Tools, H. Lenske, ECT* 2016
15
Density of States in the Continuum: the Speed Plot
Continuum Tools, H. Lenske, ECT* 2016
16
½+ Proton Density of States in C isotopes
Continuum Tools, H. Lenske, ECT* 2016
17
Sampling the 5/2+ resonance in p+12C
Continuum Tools, H. Lenske, ECT* 2016
18
Evolution of Neutron Single Particle Continuum Strength
Density of States in the Continuum Speed plot Jp=5/2-
19
QRPA 1- and 2+ Multipole-Response 128Sn
Microscopic DD-QRPA
20
Pairing across the Dripline
Continuum Dynamics: Pairing across the Dripline
21
Pairing in Infinite Nuclear Matter
Free Space SE (S=0,T=1) Interaction: (Bonn-B NN Potential) Pairing is a LOW DENSITY Phenomenon
22
Pairing Theory as Coupled Channels Problem: The Gorkov-Equations
23
Pairing in the Continuum
S. Orrigo, H.L., PLB 677 (2009)
24
Mapping to Single Particle Pairing Self-Energies
Energy Shifts and Widths Spectral Functions for particles and holes
25
Spectrum of the Gorkov Equation:
26
Neutron Spectral Functions in 9Li(3/2-)
27
Neutron Spectral Functions in 9Li(3/2-):
Continuum Admixtures into the g.s. Continuum Admixture!
28
Pairing Resonances in Dripline Nuclei: 9Li+n 10Li
S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010
29
n+9Li Scattering Phase Shifts
Jp=½+ Jp=½- n+9Li s-wave Mean-Field: as : [fm] rs : [fm] Pairing: as : 1.76[fm] rs : [fm] Continuum Tools, H. Lenske, ECT* 2016
30
Effective Range Expansion and Pole Structure
n+9Li s-wave virtual state: Mean-Field: as : fm rs : fm E=-1.38 MeV Pairing: as : fm rs : fm E=-3.63 MeV Continuum Tools, H. Lenske, ECT* 2016
31
talk of Manuela Cavallaro
Continuum Spectroscopy of 10Li=9Li+n via Numerical challenge for „standard (d,p) stripping theory“: How to evaluate a 3-D integral with only oscillatory wave functions? New TRIUMF data and analysis: talk of Manuela Cavallaro Data: H. Jeppesen et al., REX-ISOLDE Collaboration, NPA 738 (2004) 511,;NPA 748 (2005) 374.
32
Bound States in the Continuum
Continuum Tools, H. Lenske, ECT* 2016
33
1/2+ Particle and Hole Strength Functions in 14C
Particle strength function
34
Interference of Closed Channels (BiC) and Open Channels:
Fano-Dynamics of Asymmetric Resonance Line Shapes Science 340,716 (2013): Stimulated Ionization of double-excited He
35
Reaction Amplitude and Formation Cross Section
The Fano-Formula:
36
Resonance Production Scenarios in Nuclear Physics
The Fano-Wave Function:
37
Sonja Orrigo, H.L., et al. Phys.Lett. B633 (2006)
Correlation Dynamics in an Open Quantum System: 5/2+ Fano-Resonances in 15C by Core Polarization G~60…140keV Sonja Orrigo, H.L., et al. Phys.Lett. B633 (2006)
38
Bound States by Correlation Dynamics through Continuum Coupling
The DCP picture: Binding by Virtual Continuum Coupling The s.p. shell model picture H.L.,J. Prog.Part.Nucl. 561 (2004)
39
Supported by DFG, BMBF, HIC for FAIR, and GSI
Summary Discretization of the single particle continuum Sampling continuum observables Correlations across the particle threshold in Li-isotopes Bound States in the Continuum Interference of open and closed channels …with special ontributions by Sonja Orrigo and Nadia Tsoneva Supported by DFG, BMBF, HIC for FAIR, and GSI Continuum Tools, H. Lenske, ECT* 2016
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.