Download presentation
Presentation is loading. Please wait.
1
Accelerator R&D and Particle Physics at PSI
European Laboratory for Particle Physics Particle Accelerator Physics Laboratory Accelerator R&D and Particle Physics at PSI Lenny Rivkin, PSI & EPFL
2
Accelerator R&D in Switzerland and Particle Physics at PSI
High intensity protons LHC and its upgrades: high energy frontier PSI cyclotron: neutron and muon sources High intensity/precision frontier experiments Advanced Light Sources and e+e- colliders X-ray Free Electron Laser: PSI-XFEL Small emittance optimisation in storage rings (SLS) Important synergies between CERN and PSI!
3
LHC Upgrades CERN Doctoral Program!
Currently 12 EPFL doctoral students Some examples: Beam beam interaction simulations (T. Pieloni) Smaller beam size at the IP (R. de Maria) Dipole first ‚D0‘ (G. Sterbini) Injector chain upgrade, SPS intensity limit (B. Salvant) …
4
Overview high power accelerators
5
The proton accelerator
6
Handling of high power proton beams
PSI 2.2 mA (1.3 MW on target) Permit for 2.4 mA, then for 2.6 mA LHC design: 0.5 MW!
7
High intensity/precision frontier
MEG (meg) UCN, nEDM FAST MuSun m Hydrogen Lamb shift
8
LFV in SM and SUSY While LFV is forbidden in SM, it is possible in SUSY g W- m- nm ne e- g m- e- ≈ 10-12 Current experimental limit: BR(m e g) < 10-11
9
“Accidental” Background
m e g Background g g g n m e nn m m n e Annihilation in flight 180º e m e n m e nn n m → e g signal very clean Eg = Ee = 52.8 MeV qge = 180º e and g in time Good energy resolution Good spatial resolution Excellent timing resolution Good pile-up rejection
10
Status of the MEG experiment
First engineering run end of 2007 Careful detector calibration May-August 2008 Physics data taking started September 2008 Achieved in 2008: 1013 m in detector acceptance No result yet because of “blind analysis” Expect to improve the current limit of BR(meg) = 1.2 x 10-11 Plan for 2009: Double statistics, improve detector efficiencies Achieve BR(meg) by 2011/2012 1013 m+ in acceptance cooling water problem accelerator service 2008
12
High intensiry/precision frontier
MEG (meg) UCN, nEDM FAST MuSun m Hydrogen Lamb shift
13
UCN = Ultra Cold Neutrons
UCN Source at PSI UCN = Ultra Cold Neutrons Latest news: UCN tank delivered at PSI on September 4th, 2008 2m3 vacuum UCN storage 30 liters, 5K solid D2 p-beam 1.2 MW 1% duty cycle 3.6 m2 D2O ucn.web.psi.ch
14
UCN = Ultra Cold Neutrons
UCN Source at PSI UCN = Ultra Cold Neutrons 2m3 vacuum UCN storage 30 liters, 5K solid D2 Source commissioning starts in fall 2009 Will deliver several 109 UCN every ~ s ~1000 cm-3 UCN in typical experiments (today this is ~10 cm-3 at ILL Grenoble) p-beam 1.2 MW 1% duty cycle 3.6 m2 D2O ucn.web.psi.ch
15
Neutron EDM Search P, T CP
Use UCN for an improved Neutron EDM Search P, T CP + _ Neutron EDM violates parity P and time reversal invariance T + _
16
Neutron EDM Search P, T CP
Strategy: Experiment with UCN in vacuum and apparatus at ambient temperature. Use double UCN chamber, co-magnetometry and multiple external magnetometers. nedm.web.psi.ch Present best limit: dn < 2.9 x e cm Sussex-RAL-ILL collaboration C. A. Baker et al., PRL 97 (2006) nEDM collaboration 15 groups, 50 people Move from ILL to PSI March 2009 Data taking at PSI 2010 – 2011 (Phase II) Sensitivity goal: 5x10-27ecm New n2EDM operational 2011/12 Operation of new n2EDM apparatus 2012 – 2015 (Phase III) Sensitivity goal: 5x10-28ecm
17
The Neutron EDM Collaboration
Physikalisch Technische Bundesanstalt, Berlin Laboratoire de Physique Corpusculaire, Caen Institute of Physics, Jagiellonian University, Cracow Henryk Niedwodniczanski Inst. for Nucl. Physics, Cracow Joint Institute of Nuclear Reasearch, Dubna Département de physique, Université de Fribourg, Fribourg Excellence Cluster Universe, Garching Institut Laue-Langevin, Grenoble Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Biomagnetisches Zentrum, Jena Katholieke Universiteit, Leuven Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz Inst. für Physik, Johannes-Gutenberg-Universität, Mainz Technische Universität, München Paul Scherrer Institut, Villigen M. Burghoff, S. Knappe-Grüneberg, T. Sander-Thoemmes, A. Schnabel, L. Trahms G. Ban, Th. Lefort, O. Naviliat-Cuncic, E. Pierre1, G. Rogel2 K. Bodek, St. Kistryn, M. Kuzniak1, J. Zejma A. Kozela N. Khomutov M. Cvijovic, P. Knowles, A.S. Pazgalev, A. Weis P. Fierlinger, M. Horras1, F. Kuchler N.N. G. Quéméner, D. Rebreyend, S. Roccia G. Bison N. Severijns, N.N. N. du Fresne von Hohenesche, G. Hampel, J.V. Kratz, T. Lauer, C. Plonka-Spehr, N. Wiehl W. Heil, Yu. Sobolev3 I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler M. Daum, R. Henneck, K. Kirch, A. Knecht4, B. Lauss, A. Mtchedlishvili, G. Petzoldt, G. Zsigmond
18
High intensity/precision frontier
MEG (meg) UCN, nEDM FAST MuSun m Hydrogen Lamb shift
19
Muon Lifetime Measurement with FAST
FAST aims for a 2ppm (4 ps) measurement of the μ+ lifetime to determine the Fermi constant GF to 1ppm Increase the event sample by a factor 100 and reduce the systematics by a factor 10 compared to earlier measurements. This requires a precise measurement of few x1011 μ+ decays over several tm periods (Imaging , parallel acquisition, high rate) A continuous p+ beam (pM1) is stopped in a highly granular fast imaging target. The full p-m-e chain is identified by FPGA logic and the time of particles is measured. DAQ data flow of 80 MBytes/s requires online analysis. Remote operation of the detector, group of only about 10 act. members. March 5,2009 RECFA, K. Deiters
20
Results and Outlook 2006 – 2007 Commissioning 1010 events taken
2008 Data Taking 3 x 1011 events taken in 140 days Very preliminary: d (tm) = 3.2 ppm (stat) d (GF) = 1.6 ppm 2009 last year of data taking: Runs to study systematics Additional data set of 3 x 1011 events to finish the 1ppm measurement Physics Letters B 663 (2008) 172–180 March 5,2009 RECFA, K. Deiters
21
High intensity/precision frontier
MEG (meg) UCN, nEDM FAST MuSun m Hydrogen Lamb shift
22
a precise measurement of the μd-capture rate
the MuSun experiment at PSI (Urbana-Gatchina-PSI-Lexington-Boston-Louvain collaboration) μ + d n + n + νμ model-independent connection via effective field theories a precise measurement of the μd-capture rate calibrates the basic solar fusion reaction p + p d + e+ + and important neutrino reactions + d p + p + e- / p + n +
23
cut-out view of the MuSun detector: measures the μ e lifetime of each stopping muon
eSC e- ePC2 ePC1 mPC Cryo-TPC μ- mSC
24
the 30K Cryo-TPC (l=15cm, h=10cm - in construction at Gatchina)
25
High intensity/precision frontier
MEG (meg) UCN, nEDM FAST MuSun m Hydrogen Lamb shift
29
Accelerators R&D at PSI
PSI-XFEL Accelerators R&D at PSI Synchrotron Light Source Second generation X-ray laser Proton Cyclotron Innovative concept for a compact X-ray laser Small emittance High gradient acceleration (DC, RF) Lower current beam Lower electron energy, shorter linac Shorter undulator period
30
X-FEL facilities European XFEL DESY 2013 Japan SCSS – SPring8 2010 USA
1 km Japan SCSS – SPring8 2010 USA LCLS – SLAC 2009
31
Small emittance gun R&D Tests of field emission, high „DC“ accelerating gradient based source
32
First results with low emittance demonstration R&D
Laser Photo-Field Emission from Needle Cathodes for Low Emittance Electron Beams, R. Ganter et. al. Phys. Rev. Lett. 100, (2008)
33
Construction of 250 MeV injector
PSI – XFEL Layout
34
CLIC @ 12 GHz: synergies with PSI-XFEL
CLIC 100 MeV/m accelerating structures development needs stand alone klystron source: ordered 1 from SLAC PSI – XFEL also needs such sources ordered 2 from SLAC Testing is done at SLAC and KEK for now… two beam test stand at the CTF3 test facility at CERN PSI/EPFL contributions to CTF3
35
Stable small emittance beams in rings
Constant thermal load on: Beam line optics Accelerator components (BPMs, vacuum chamber…) Beamsizes σx σy [µm] Tunnel Temperature [0C] 25 ± 0.03 average Temperatures of the 5 Sectors 25.4 25.3 25.2 25.1 25.0 24.9 24.8 24.7 1 day σx σy 1 day σx 1 mm average Temperatures of the 5 Sectors 0.050 Vertical emittance ey 4 pm-rad; coupling ey/ex ~ 0.08%
36
Damping Rings beam emittances
37
CMS Barrel Pixel System
PSI / Uni ZH / ETHZ / Uni BS */ HEPHY 3 Layers: r = 4, 7, 11 cm 3D precision tracking points Measure impact parameter from b, c, t – particles decays Track seeding in CMS Pixel Module Development of : ROC, Bumpbonding & Module (PSI) Sensor (PSI, Uni BS, Uni ZH) Readout Chain & Module Testing (ETHZ) Mechanics & Supply Tube (Uni. ZH) VME - FED module (HEPHY, Vienna) (65mm x 22mm) ~ 65’000 pixel
38
PSI Pixel Detector for the CMS Experiment@CERN
Pixel modules mounted onto C-fibre mechanics 768 pixel modules 3 cylindrical layers 48 Mega pixel Pixel modules designed for continous data rates of 40 Mega frames /sec LHC Physics Pixel Detector successfully installed and integrated in the center of CMS taking cosmics 25. July 08 Installation into CMS 24.July 08
39
CMS Cosmic Run Nov 2008 CRAFT Run
Cosmic Run of whole CMS with 3.8T magnetic field gives about 77k cosmic tracks in Pixel Detector Pixel Detector works well Alignment of pixel detector Test & understand detector
40
BESSY Innovation Price 2007
CMS Pixel Spin-Off : Pilatus X-ray Pixel Detector X-ray counting digital pixel detector for synchrotron applications Digital X-ray film fast, direct, distortion free electronic readout Spin off development ( 1997 ) from CMS Pixel Detector Spin off company DECTRIS 2007 2009 ~ 15 employees Delivers advances pixel x-ray detectors to all major synchrotron labs in world 80mm 36 mm BESSY Innovation Price 2007 Ch. Brönnimann, SLS E. Eikenberry, SLS R. Horisberger, TEM
41
Cancer treatment with proton beam
TUMOR CONTROL 95% (Brain-, head and neck-, spine- tumors, pelvis sarcoma) Patients every 25 – 30 min 420 Children under anesthesia 40 EYE MELANOMA 98% Patients treated 5000
42
COME VISIT PSI!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.