Presentation is loading. Please wait.

Presentation is loading. Please wait.

Frequency distributions and graphic representations

Similar presentations


Presentation on theme: "Frequency distributions and graphic representations"— Presentation transcript:

1 Frequency distributions and graphic representations
Chapter 2 Frequency distributions and graphic representations

2 Introduction Data description
How can we represent and provide information about them in the most convenient form? This depends on their number. To work with a large number of data (we can not obtain all the information at a glance) use two basic descriptive strategies: Frequency tables Graphic representations

3 Selecting the type of variable
CUALITATIVE OR NOMINAL ORDINAL (CUASICUANTITATIVE) DISCRETE CUANTITATIVE CONTINUE CUANTITATIVE

4 The best election VARIABLE: Alcoholism
Cualitative (2 categories): Abstemious/Drinker Ordinal: Abstemious/Moderate drinker/Heavy drinker C. Discrete: Number of drinks and cocktails drunk for a certain time interval, for example, one week. C. Continua: Liters of alcohol ingested per week.

5 1. Cualitative variables (nominal or categorical)
What is your marital status? Single 1 Marital Status Married 2 Widow/er 3

6 Cualitative variables (nominal or categorical)
A) Binary, binomial or dichotomous B) Polytomous or Multinomial

7 Xi : Are the different values of the variable “Marital status": Single, Married and Widowed
Sex: Male and Female Gender: Male / Fem. Smoking: Yes / No Sex relation: Yes / No Media: Radio / TV / Press Decriminalization of abortion: Against / Indifferent / A favor Sick: psychotic / neurotic / Organic Political opinion: Center / Left / Right Skills: Ambidextrous / Left / Right Political parties: PP / IU / PSOE / PA Type of Drug: Cocaine, Marijuana, Heroin

8 Marital Status S M W

9 Structure of a frequency distribution
Frequency distribution: data tables in which represent at least: The values of the variable (Xi) The frequencies of these values(fi)

10 Structure of qualitative or categorical data distribution table
Different values of the variable “marital status” Number of times that each value appears Xi fi S 18 M 9 W 3

11 a) Absolute frequency: fi
Number of subjects that belong in each category (f1 , f2 , f3) fi f1 + f2 + f3 = n n Total number of subjects

12 Absolute frequency: fi
Xi fi The categories should X1 = S f1 = 18 1. Be clearly defined X2 = M f2 = 9 2. Be mutually exclusive X3 = W f3 = 3 3. Be exhaustives Total n = 30

13 b) Relative frequency or proportion: fri
The relative frequency is the ratio of the absolute frequency and n Reports on the importance that has a value within the set to which it belongs: Example: n= 100 n= 50 X1-X10; CI= 120 fi= 10 fi = 10 fr= 0’1 (10%) fr= 0’2 (20%)

14 Relative frequency: fri
To find the value:

15 Properties ∑ fri = fr1 + fr2 + fr3 = 1 0 ≤ fri ≤ 1

16 Example 0, 6 0, 3 0, 1 1 Xi fi fri S f1 = 18 M f2 = 9 W f3 = 3 T
n = 30 0, 6 0, 3 0, 1 1

17 c) Percentages: %i The percentage is equal to the relative frequency multiplied by 100 %i = fri x x 100

18 Properties ∑ %i = %1 + %2 + %3 = 100% 1ª 2ª 0 ≤ %i ≤ 100 60 30 10 100
Xi fi fri %i S f1 = 18 0,6 M f2 = 9 0.3 W f3 = 3 0.1 T n = 30 1 60 30 10 100

19 Graphic representation: Bar Chart
More frequency, more bar height ORDINATE ABSCISSA

20 Ciclograma or Pie chart
MARITAL STATUS

21 Complete the graphic representation
Reproduces the frequency distribution table of a qualitative variable (4 categories) based on its incomplete graphical representation, knowing that 25% of the data have the value 2. Complete the graphic representation

22 2. Ordinal variables (cuasicuantitatives)
Degree of Responsibility Too high 1 High 2 Medium 3 Low 4 5 Too Low

23 2. Ordinal variables Socioeconomic status: High / Medium / Low
Level of agreement: Poor / Fair / Moderate / Substantial / Excellent Responsibility level: Very High / High / Medium / Low / Very Low Social class: High / Medium / Low Skill level: High / Medium / Low Concentration ability: Poor / Fair / Moderate / Substantial / Excellent Degree of emotional distress: Very High / High / Medium / Low / Very Low Income Level: High / Medium / Low

24 Degree of responsibility
1 2 3 4 5

25 What we already know ... Xi fi fri %i Very high 6 0,075 7,5 High 10
0,125 12,5 Medium 48 0.600 60 Low 12 0,150 15 Very low 4 0,050 5 Total 80 1 100

26 d) Cumulative frequency: Fi
It allows consider each value not isolated from the others, but in conjunction with them Xi fi fri %i Fi Very high 6 0,075 7,5 F1 High 10 0,125 12,5 F2 Medium 48 0.600 60 F3 Low 12 0,150 15 F4 Very low 4 0,050 5 F5 Total 80 1 100 F1 = f1 F2 = F1 + f2 F3 = F2 + f3 F4 = F3 + f4 F5 = F4 + f5

27 An alternative F1 = f1 F2 = f1 + f2 F3 = f1 + f2 + f3
Xi fi fri %i Fi Very high 6 0,075 7,5 High 10 0,125 12,5 16 Medium 48 0.600 60 64 Low 12 0,150 15 76 Very low 4 0,050 5 80 Total 1 100 An alternative F1 = f1 F2 = f1 + f2 F3 = f1 + f2 + f3 F4 = f1 + f2 + f3 + f4 F5 = f1 + f2 + f3 + f4 + f5

28 e) Cumulative relative frequency (or cumulative proportion: Fri
Ratio of cumulative frequency of a value Xi and the total frequency Xi fi fri %i Fi Fri Very high 6 0,075 7,5 High 10 0,125 12,5 16 0,200 Medium 48 0.600 60 64 0,800 Low 12 0,150 15 76 0,950 Very low 4 0,050 5 80 1 Total 100 Fr1 = fr1 = 0,075 Fr2 = Fr1 + fr2 = 0, ,125 = 0,20 Fr3 = Fr2 + fr3 = 0,20 + 0,60 = 0,80 Fr4 = Fr3 + fr4 = 0,80 + 0,15 = 0,95 Fr5 = Fr4 + fr5 = 0,95 + 0,05 = 1

29 f) Cumulative Percentages: %ai
Xi fi fri %i Fi Fri %ai Very high 6 0,075 7,5 High 10 0,125 12,5 16 0,200 20 Medium 48 0.600 60 64 0,800 80 Low 12 0,150 15 76 0,950 95 Very low 4 0,050 5 1 100 Total %a1 = %1 = 7,5% %a2 = %a1 + %2 = 7,5 + 12,5 = 20% %a3 = %a2 + %3 = = 80% %a4 = %a3 + %4 = = 95% %a5 = %a4 + %5 = = 100%

30 Bar chart

31 Cumulative bar chart

32 3. Discrete quantitative variable
Number of children of Seville’s families 20 married couples are selected from the city of Seville and asked about the number of children they have. Their answers are: 2, 1, 0, 3, 2, 2, 3, 1, 1, 0, 1, 2, 1, 2, 0, 2, 4, 2, 3, 1

33 Frequency table Raw Data Cumulative data Xi fi fri %i Fi Fri %ai 3
3 0.15 15 1 6 0.30 30 9 0.45 45 2 7 0.35 35 16 0.80 80 19 0.95 95 4 0.05 5 20 100 Total

34 Bar Chart

35 Cumulative Bar chart

36 4. Continuous quantitative variable
Attention test’s scores 22 17 6 7 18 10 23 11 19 24 13 14 25 26 28 15 20 30 16 32 21

37

38 Histogram


Download ppt "Frequency distributions and graphic representations"

Similar presentations


Ads by Google