Download presentation
Presentation is loading. Please wait.
1
ELEC 5270/6270 Spring 2011 Low-Power Design of Electronic Circuits Gate-Level Power Analysis
Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
2
Power Analysis Motivation: Applications Specification Optimization
Reliability Applications Design analysis and optimization Physical design Packaging Test Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
3
Abstraction, Complexity, Accuracy
Abstraction level Computing resources Analysis accuracy Algorithm Least Worst Software and system Hardware behavior Register transfer Logic Circuit Device Most Best Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
4
Spice Circuit/device level analysis Analysis is accurate but expensive
Circuit modeled as network of transistors, capacitors, resistors and voltage/current sources. Node current equations using Kirchhoff’s current law. Average and instantaneous power computed from supply voltage and device current. Analysis is accurate but expensive Used to characterize parts of a larger circuit. Original references: L. W. Nagel and D. O. Pederson, “SPICE – Simulation Program With Integrated Circuit Emphasis,” Memo ERL-M382, EECS Dept., University of California, Berkeley, Apr L. W. Nagel, SPICE 2, A Computer program to Simulate Semiconductor Circuits, PhD Dissertation, University of California, Berkeley, May 1975. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
5
Logic Model of MOS Circuit
VDD pMOS FETs a Da Dc c a Ca b Db c Cc b Da and Db are interconnect or propagation delays Dc is inertial delay of gate Cb nMOS FETs Cd Ca , Cb , Cc and Cd are node capacitances Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
6
Spice Characterization of a 2-Input NAND Gate
Input data pattern Delay (ps) Dynamic energy (pJ) a = b = 0 → 1 69 1.55 a = 1, b = 0 → 1 62 1.67 a = 0 → 1, b = 1 50 1.72 a = b = 1 → 0 35 1.82 a = 1, b = 1 → 0 76 1.39 a = 1 → 0, b = 1 57 1.94 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
7
Spice Characterization (Cont.)
Input data pattern Static power (pW) a = b = 0 5.05 a = 0, b = 1 13.1 a = 1, b = 0 5.10 a = b = 1 28.5 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
8
Switch-Level Partitioning
Circuit partitioned into channel-connected components for Spice characterization. Reference: R. E. Bryant, “A Switch-Level Model and Simulator for MOS Digital Systems,” IEEE Trans. Computers, vol. C-33, no. 2, pp , Feb Internal switching nodes not seen by logic simulator G2 G1 G3 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
9
Delay and Discrete-Event Simulation (NAND gate)
Transient region a Inputs b c (CMOS) c (zero delay) c (unit delay) Logic simulation X c (multiple delay) rise=5, fall=5 Unknown (X) c (minmax delay) min =2, max =5 5 Time units Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
10
Event-Driven Simulation Example
Scheduled events c = 0 d = 1, e = 0 g = 0 f = 1 g = 1 Activity list d, e f, g g a =1 e =1 t = 0 1 2 3 4 5 6 7 8 2 c =1→0 g =1 2 2 d = 0 Time stack 4 f =0 b =1 g 4 8 Time, t Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
11
Time Wheel (Circular Stack)
max Current time pointer t=0 Event link-list 1 2 3 4 5 6 7 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
12
Gate-Level Power Analysis
Pre-simulation analysis: Partition circuit into channel connected components. Determine node capacitances from layout analysis (accurate) or from wire-load model* (approximate). Determine dynamic and static power from Spice for each gate. Determine gate delays using Spice or Elmore delay model. * Wire-load model estimates capacitance of a net by its pin-count. See Yeap, p. 39. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
13
Elmore Delay Model W. Elmore, “The Transient Response of Damped Linear Networks with Particular Regard to Wideband Amplifiers,” J. Appl. Phys., vol. 19, no.1, pp , Jan 2 R2 C2 R1 1 s 4 R4 C1 C4 R3 3 Shared resistance: R45 = R1 + R3 R15 = R1 R34 = R1 + R3 R5 C3 5 C5 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
14
Elmore Delay Formula N Delay at node k = 0.69 Σ Cj × Rjk j=1
where N = number of capacitive nodes in the network Example: Delay at node 5 = 0.69[R1 C1 + R1 C2 + (R1+R3)C3 + (R1+R3)C4 + (R1+R3+R5)C5] Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
15
Gate-Level Power Analysis (Cont.)
Run discrete-event (event-driven) logic simulation with a set of input vectors. Monitor the toggle count of each net and obtain capacitive component of power dissipation: Pcap = Σ Ck V 2 f all nodes k Where: Ck is the total node capacitance being switched, as determined by the simulator. V is the supply voltage. f is the clock frequency, i.e., the number of vectors applied per unit time Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
16
Gate-Level Power Analysis (Cont.)
Monitor dynamic energy events at the input of each gate and obtain internal switching (short circuit) power dissipation: Pint = Σ Σ E(g,e) F(g,e) gates g events e Where E(g,e) = energy of event e of gate g, pre-computed short-circuit power from Spice. F(g,e) = occurrence frequency of the event e at gate g, observed by logic simulation. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
17
Gate-Level Power Analysis (Cont.)
Monitor the static power dissipation state of each gate and obtain the static power dissipation: Pstat = Σ Σ P(g,s) T(g,s)/ T gates g states s Where P(g,s) = static power dissipation of gate g for state s, obtained from Spice. T(g,s) = duration of state s at gate g, obtained from logic simulation. T = number of vectors × vector period. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
18
Gate-Level Power Analysis
Sum up all three components of power: P = Pcap + Pint + Pstat References: A. Deng, “Power Analysis for CMOS/BiCMOS Circuits,” Proc. International Workshop Low Power Design, 1994. J. Benkoski, A. C. Deng, C. X. Huang, S. Napper and J. Tuan, “Simulation Algorithms, Power Estimation and Diagnostics in PowerMill,” Proc. PATMOS, 1995. C. X. Huang, B. Zhang, A. C. Deng and B. Swirski, “The Design and Implementation of PowerMill,” Proc. International Symp. Low Power Design, 1995, pp Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
19
Probabilistic Analysis
View signals as a random processes Prob{s(t) = 1} = p1 p0 = 1 – p1 C 0→1 transition probability = (1 – p1) p1 Power, P = (1 – p1) p1 CV 2 fck Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
20
Source of Inaccuracy p1 = 0.5 P = 0.5CV 2 fck 1/fck p1 = 0.5
Observe that the formula, Power, P = (1 – p1) p1 C V 2 fck = 0.25 C V 2 fck is not correct. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
21
Switching Frequency Number of transitions per unit time: N(t) T = ───
For a continuous signal: T = lim ─── t→∞ t T is defined as transition density. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
22
Static Signal Probabilities
Observe signal for interval t 0 + t 1 Signal is 1 for duration t 1 Signal is 0 for duration t 0 Signal probabilities: p 1 = t 1/(t 0 + t 1) p 0 = t 0/(t 0 + t 1) = 1 – p 1 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
23
Static Transition Probabilities
T 01 = p 0 Prob{signal is 1 | signal was 0} = p 0 p1 T 10 = p 1 Prob{signal is 0 | signal was 1} = p 1 p 0 T = T 01 + T 10 = 2 p 0 p 1 = 2 p 1 (1 – p 1) Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
24
Static Transition Probability
0.25 0.2 0.1 0.0 f = p1(1 – p1) p1 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
25
Inaccuracy in Transition Probability
1/fck p1 = 0.5 T = 4/6 p1 = 0.5 T = 1/6 Observe that the formula, T = 2 p1 (1 – p1), is not correct. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
26
Cause for Error and Correction
Probability of transition is not independent of the present state of the signal. Determine probability p 01 of a 0→1 transition. Recognize p 01 ≠ p 0 × p 1 We obtain p 1 = (1 – p 1) p 01 + p 1 p 11 p 01 p 1 = ───────── 1 – p 11 + p 01 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
27
Correction (Cont.) Since p 11 + p 10 = 1, i.e., given that the signal was previously 1, its present value can be either 1 or 0. Therefore, p 01 p 1 = ────── p 10 + p 01 This uniquely gives signal probability as a function of transition probabilities. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
28
Transition and Signal Probabilities
p01 = p10 = 1.0 p00 = p11 = 0.0 p1 = 0.5 1/fck p01 = p10 = 2/3 p00 = p11 = 1/3 p1 = 0.5 p01 = p10 = 1/4 p01 = p10 = 3/4 p1 = 0.5 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
29
Probabilities: p0, p1, p00, p01, p10, p11
Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
30
Transition Density T = 2 p 1 (1 – p 1) = p 0 p 01 + p 1 p 10
Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
31
Power Calculation Power can be estimated if transition density is known for all signals. Calculation of transition density requires Signal probabilities Transition densities for primary inputs; computed from vector statistics Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
32
Signal Probabilities x1 x2 x1 x2 x1 x2 x1 + x2 – x1x2 x1 1 - x1
Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
33
Signal Probabilities 0.5 x1 x2 x3 x1 x2 0.5 0.25 0.625 0.5
y = 1 - (1 - x1x2) x3 = 1 - x3 + x1x2x3 = 0.625 X1 X2 X3 Y Ref: K. P. Parker and E. J. McCluskey, “Probabilistic Treatment of General Combinational Networks,” IEEE Trans. on Computers, vol. C-24, no. 6, pp , June 1975. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
34
Correlated Signal Probabilities
0.5 x1 x2 x1 x2 0.5 0.25 0.625? y = 1 - (1 - x1x2) x2 = 1 – x2 + x1x2x2 = 1 – x2 + x1x2 = 0.75 (correct value) X1 X2 Y 0 0 1 0 1 0 1 0 1 1 1 1 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
35
Correlated Signal Probabilities
0.5 x1 + x2 – x1x2 x1 x2 0.5 0.75 0.375? y = (x1 + x2 – x1x2) x2 = x1x2 + x2x2 – x1x2x2 = x1x2 + x2 – x1x2 = x2 = 0.5 (correct value) X1 X2 Y 0 0 0 0 1 1 1 0 0 1 1 1 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
36
Observation Numerical computation of signal probabilities is accurate for fanout-free circuits. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
37
Remedies Use Shannon’s expansion theorem to compute signal probabilities. Use Boolean difference formula to compute transition densities. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
38
Shannon’s Expansion Theorem
C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Trans. AIEE, vol. 57, pp , 1938. Consider: Boolean variables, X1, X2, , Xn Boolean function, F(X1, X2, , Xn) Then F = Xi F(Xi=1) + Xi’ F(Xi=0) Where Xi’ is complement of X1 Cofactors, F(Xi=j) = F(X1, X2, . . , Xi=j, . . , Xn), j = 0 or 1 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
39
Expansion About Two Inputs
F = XiXj F(Xi=1, Xj=1) + XiXj’ F(Xi=1, Xj=0) + Xi’Xj F(Xi=0, Xj=1) + Xi’Xj’ F(Xi=0, Xj=0) In general, a Boolean function can be expanded about any number of input variables. Expansion about k variables will have 2k terms. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
40
Correlated Signal Probabilities
X1 X2 X1 X2 Y = X1 X2 + X2’ X1 X2 Y 0 0 1 0 1 0 1 0 1 1 1 1 Shannon expansion about the reconverging input, X2: Y = X2 Y(X2 = 1) + X2’ Y(X2 = 0) = X2 (X1) + X2’ (1) Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
41
Correlated Signals When the output function is expanded about all reconverging input variables, All cofactors correspond to fanout-free circuits. Signal probabilities for cofactor outputs can be calculated without error. A weighted sum of cofactor probabilities gives the correct probability of the output. For two reconverging inputs: f = xixj f(Xi=1, Xj=1) + xi(1-xj) f(Xi=1, Xj=0) + (1-xi)xj f(Xi=0, Xj=1) + (1-xi)(1-xj) f(Xi=0, Xj=0) Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
42
Correlated Signal Probabilities
X1 X2 X1 X2 Y = X1 X2 + X2’ X1 X2 Y 0 0 1 0 1 0 1 0 1 1 1 1 Shannon expansion about the reconverging input, X2: Y = X2 Y(X2=1) + X2’ Y(X2=0) = X2 (X1) + X2’ (1) y = x2 (0.5) + (1-x2) (1) = 0.5 (0.5) + (1-0.5) (1) = 0.75 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
43
Example 0.5 Supergate 0.25 Point of reconv. 0.5 0.0 0.5 1.0 0.5 1 0.0
0.0 1.0 0.5 0.375 0.5 Reconv. signal Signal probability for supergate output = 0.5 Prob{rec. signal = 1} Prob{rec. signal = 0} = 0.5 × × 0.5 = 0.75 S. C. Seth and V. D. Agrawal, “A New Model for Computation of Probabilistic Testability in Combinational Circuits,” Integration, the VLSI Journal, vol. 7, no. 1, pp , April 1989. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
44
Probability Calculation Algorithm
Partition circuit into supergates. Definition: A supergate is a circuit partition with a single output such that all fanouts that reconverge at the output are contained within the supergate. Identify reconverging and non-reconverging inputs of each supergate. Compute signal probabilities from PI to PO: For a supergate whose input probabilities are known Enumerate reconverging input states For each input state do gate by gate probability computation Sum up corresponding signal probabilities, weighted by state probabilities Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
45
Calculating Transition Density
1 Boolean function x1, T1 . xn, Tn y, T(Y) = ? n Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
46
Boolean Difference ∂Y Boolean diff(Y, Xi) = ── = Y(Xi=1) ⊕ Y(Xi=0) ∂Xi
Boolean diff(Y, Xi) = 1 means that a path is sensitized from input Xi to output Y. Prob(Boolean diff(Y, Xi) = 1) is the probability of transmitting a toggle from Xi to Y. Probability of Boolean difference is determined from the probabilities of cofactors of Y with respect to Xi. F. F. Sellers, M. Y. Hsiao and L. W. Bearnson, “Analyzing Errors with the Boolean Difference,” IEEE Trans. on Computers, vol. C-17, no. 7, pp , July 1968. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
47
Transition Density n T(y) = Σ T(Xi) Prob(Boolean diff(Y, Xi) = 1) i=1
F. Najm, “Transition Density: A New Measure of Activity in Digital Circuits,” IEEE Trans. CAD, vol. 12, pp , Feb Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
48
Power Computation For each primary input, determine signal probability and transition density for given vectors. For each internal node and primary output Y, find the transition density T(Y), using supergate partitioning and the Boolean difference formula. Compute power, P = Σ 0.5CY V2 T(Y) all Y where CY is the capacitance of node Y and V is supply voltage. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
49
Transition Density and Power
0.2, 1 X1 X2 X3 0.06, 0.7 0.3, 2 Ci 0.436, 3.24 Y 0.4, 3 CY Transition density Signal probability Power = 0.5 V 2 (0.7Ci CY) Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
50
Prob. Method vs. Logic Sim.
Circuit No. of gates Probability method Logic Simulation Error % Av. density CPU s* C432 160 3.46 0.52 3.39 63 +2.1 C499 202 11.36 0.58 8.57 241 +29.8 C880 383 2.78 1.06 3.25 132 -14.5 C1355 346 4.19 1.39 6.18 408 -32.2 C1908 880 2.97 2.00 5.01 464 -40.7 C2670 1193 3.50 3.45 4.00 619 -12.5 C3540 1669 4.47 3.77 4.49 1082 -0.4 C5315 2307 3.52 6.41 4.79 1616 -26.5 C6288 2406 25.10 5.67 34.17 31057 C7552 3512 3.83 9.85 5.08 2713 -24.2 * CONVEX c240 Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
51
Probability Waveform Methods
F. Najm, R. Burch, P. Yang and I. Hajj, “CREST – A Current Estimator for CMOS Circuits,” Proc. IEEE Int. Conf. on CAD, Nov. 1988, pp C.-S. Ding, et al., “Gate-Level Power Estimation using Tagged Probabilistic Simulation,” IEEE Trans. on CAD, vol. 17, no. 11, pp , Nov F. Hu and V. D. Agrawal, “Dual-Transition Glitch Filtering in Probabilistic Waveform Power Estimation,” Proc. IEEE Great Lakes Symp. VLSI, Apr. 2005, pp F. Hu and V. D. Agrawal, “Enhanced Dual-Transition Probabilistic Power Estimation with Selective Supergate Analysis,” Proc. IEEE Int. Conf. Computer Design, Oct pp Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
52
Problem 1 For equiprobable inputs analyze the 0→1 transition probabilities of all gates in the two implementations of a four-input AND gate shown below. Assuming that the gates have zero delays, which implementation will consume less average dynamic power? E E A B C D A B C D F G G F Chain structure Tree structure Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
53
Total transitions/vector
Problem 1 Solution Given the primary input probabilities, P(A) = P(B) = P(C) = P(D) = 0.5, signal and transition (0→1) probabilities are as follows: Signal name Chain Tree Prob(sig.= 1) Prob(0→1) Prob(sig.=1) E 0.2500 0.1875 F 0.1250 0.1094 G 0.0625 0.0586 Total transitions/vector 0.3555 0.4336 The tree implementation consumes 100×( – )/ = 22% more average dynamic power. This advantage of the chain structure may be somewhat reduced because of glitches caused by unbalanced path delays. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
54
Problem 2 Assume that the two-input AND gates in Problem 1 each has one unit of delay. Find input vector pairs for each implementation that will consume the peak dynamic power. Which implementation has lower peak dynamic power consumption? E E A B C D A B C D F G G F Chain structure Tree structure Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
55
Problem 2 Solution For the chain structure, a vector pair {A B C D} = {1110}, {1011} will produce four gate transitions as shown below. A B C D E F G A=11 B=10 E=10 C=11 F=10 D=01 G=00 Time units Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
56
Problem 2 Solution (Cont.)
The tree structure has balanced delay paths. So it cannot make more than 3 gate transitions. A vector pair {ABCD} = {1111},{1010} will produce three transitions as shown below. A B C D E F G A=11 B=10 E=10 C=11 D=10 F=10 G=10 Time units Therefore, just counting the gate transitions, we find that the chain consumes 100(4 – 3)/3 = 33% higher peak power than the tree. Copyright Agrawal, 2007 ELEC / Jan 24 Lecture 3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.