Presentation is loading. Please wait.

Presentation is loading. Please wait.

Oblique Shocks : Less Irreversible Thermodynamic Devices

Similar presentations


Presentation on theme: "Oblique Shocks : Less Irreversible Thermodynamic Devices"— Presentation transcript:

1 Oblique Shocks : Less Irreversible Thermodynamic Devices
“The pessimist complains about the Shocks; the optimist expects it to change; the realist adjusts the flyers.” P M V Subbarao Professor Mechanical Engineering Department Means to Supply Controlled Air to Supersonic Flyers !!!

2 Hypersonic Flyers : Comprehensive Mechanism of Intake Air Control

3 Continuity Equation for Oblique Shock Wave
wx ux Vx wy uy Vy x y • For Steady Flow thru an Oblique Shock

4 Momentum Equation for Oblique Shock Wave
wx ux Vx wy uy Vy x y • For Steady Flow w/o Body Forces

5 Oblique Shock is a Barbed Wire Fence

6 Though Experiment : Tangential Component of Momentum
( ) - r x u w A + y = 0 • But from continuity w x = y r x u = y Tangential velocity is Constant across an oblique Shock wave

7 Normal Component of Momentum Equation
Normal component is always subjected to normal shock!!!

8 h + u = V = u + w & Energy Equation Steady Adiabatic Flow
Write Velocity in terms of components V x 2 = u + w & y Tangential component of velocity is not responsible for energy conversion h x + u 2 = y • thus …

9 Collected Oblique Shock Equations
• Continuity q b-q b u x y w r x u = y • Momentum w x = y p x + r u 2 = y • Energy c p T x + u 2 = y

10 An oblique sock is a normal Shock to Normal Velocity Component
wx & Mtx ux & Mnx Vx & Mx Vy & My wy & Mty uy & Mny • Then by similarity we can write the solution • Defining: Mnx=Mxsin(b Mtx=Mxcos(b M n y = 1 + g - ( ) 2 x æ è ç ö ø ÷

11 The Normal Component of Tamed Devil
All the scalar quantities change only due to change in normal velocity • Similarity Solution r y x = g + 1 ( ) M n 2 - p y x = 1 + 2 g ( ) M n - T y x = 1 + 2 g ( ) M n - é ë ê ù û ú Letting M n x = s i b ( )

12 ( ) ( ) r = g + 1 M s i n b - p T é ë ê ù û ú Then …..
y = 1 + g - ( ) 2 x s i b æ è ç ö ø ÷ Then ….. r y x = g + 1 ( ) M s i n b 2 - p T é ë ê ù û ú • Change in Properties across Oblique Shock wave ~ f(Mx, )

13 Total Mach Number Downstream of Oblique Shock
• Consider the geometry of down stream flow M 3 y Mn Mt b-q M y = n s i b - q ( )

14 Determination of Oblique Shock Wave Angle
• Properties across Oblique Shock wave ~ f(Mx, ) • q is the geometric angle that “forces” the flow thru OS. • How do we relateqto b 

15 Oblique Shock Wave Angle Chart
max curve Mx=5.0 Mx=3.0 Mx=1.5 Mx=4.0 Mx=2.5 Mx=2.0 Mx

16 Limiting Cases of Oblique Shock Wave
qmax

17 Maximum Turning Angle qmax

18 Highest Angle Objects

19 Performance of An Adiabatic Oblique Shock
y x = 1 + 2 g ( ) M n - T y x = 1 + 2 g ( ) M n - é ë ê ù û ú But Pressure Recovery Factor or Total Pressure Ratio for the oblique shock :

20 Performance of An Adiabatic Oblique Shock
Across a Shock Therefore Pressure Recovery Factor or Total Pressure Ratio for the oblique shock :

21 Special Designs of Center Bodies
If there are multiple shocks: Mx My1 My2 My3 q


Download ppt "Oblique Shocks : Less Irreversible Thermodynamic Devices"

Similar presentations


Ads by Google