Presentation is loading. Please wait.

Presentation is loading. Please wait.

GCSE: Quadratic Simultaneous Equations

Similar presentations


Presentation on theme: "GCSE: Quadratic Simultaneous Equations"β€” Presentation transcript:

1 GCSE: Quadratic Simultaneous Equations
Dr J Frost Last modified: 27th December 2016

2 ? 2π‘₯+3𝑦=3 4π‘₯βˆ’π‘¦=13 What are simultaneous equations are what does it mean to β€˜solve’ them? Instead of one equation involving one unknown value (e.g. 𝒙+𝟐=πŸ“), we have multiple equations with multiple unknowns. To solve simultaneous in terms of 𝒙 and π’š means to find a value for 𝒙 and π’š which combined satisfy the equations. In general we need an equation per variable. So if we had 3 unknown values (𝒙,π’š,𝒛), we’d need at least 3 equations. ?

3 2π‘₯+3𝑦=3 4π‘₯βˆ’π‘¦=13 Starter π‘₯=3, 𝑦=βˆ’1 ? Answer ? ?
Solve the following simultaneous (linear) equations. 2π‘₯+3𝑦=3 4π‘₯βˆ’π‘¦=13 ? Answer π‘₯=3, 𝑦=βˆ’1 Method 1: Elimination Method 2: Substitution ? 2π‘₯+3𝑦=3 12π‘₯βˆ’3𝑦=39 Adding two equations: 14π‘₯=42 π‘₯=3 Substituting back into second equation: 12βˆ’π‘¦=13 β†’ 𝑦=βˆ’1 ? Rearranging second equation: 𝑦=4π‘₯βˆ’13 Substituting into first equation: 2π‘₯+3 4π‘₯βˆ’13 =3 2π‘₯+12π‘₯βˆ’39=3 14π‘₯=42 … This is the method we’ll be using this lesson, where elimination is not possible.

4 Motivation ? ? ? y 10 ! x 10 10 -2 10 When π’š=βˆ’πŸ–, 𝒙=βˆ’πŸ–+𝟐=βˆ’πŸ”
Given a circle and a line, we may wish to find the point(s) at which the circle and line intersect. How could we do this algebraically? y 10 ! STEP 1: Rearrange linear equation to make x or y the subject. π‘₯=𝑦+2 π‘₯βˆ’π‘¦=2 π‘₯ 2 + 𝑦 2 =100 ? STEP 2: Substitute into quadratic and solve. 𝑦 𝑦 2 =100 𝑦 2 +4𝑦+4+ 𝑦 2 =100 2 𝑦 2 +4π‘¦βˆ’96=0 𝑦 2 +2π‘¦βˆ’48=0 𝑦+8 π‘¦βˆ’6 =0 𝑦=βˆ’8, 𝑦=6 x ? 10 10 -2 10 STEP 3: Use an equation (e.g from Step 1) to find the values of the other variable. When π’š=βˆ’πŸ–, 𝒙=βˆ’πŸ–+𝟐=βˆ’πŸ” When π’š=πŸ”, 𝒙=πŸ”+𝟐=πŸ– ?

5 Another Example π‘₯ 2 + 𝑦 2 =17 π‘₯+2𝑦=2
𝒙=πŸβˆ’πŸπ’š πŸβˆ’πŸπ’š 𝟐 + π’š 𝟐 =πŸπŸ• πŸ’βˆ’πŸ–π’š+πŸ’ π’š 𝟐 + π’š 𝟐 =πŸπŸ• πŸ“ π’š 𝟐 βˆ’πŸ–π’šβˆ’πŸπŸ‘=𝟎 πŸ“π’šβˆ’πŸπŸ‘ π’š+𝟏 =𝟎 π’š= πŸπŸ‘ πŸ“ 𝒐𝒓 π’š=βˆ’πŸ If π’š= πŸπŸ‘ πŸ“ , 𝒙=πŸβˆ’πŸ πŸπŸ‘ πŸ“ =βˆ’ πŸπŸ” πŸ“ If π’š=βˆ’πŸ, 𝒙=πŸβˆ’πŸ βˆ’πŸ =πŸ’ Step 1: Rearrange linear equation to make π‘₯ or 𝑦 the subject. ? Step 2: Substitute into quadratic equation and solve. Common Schoolboy Error: To forget the + 𝑦 2 that was already there. Step 3: Use an equation (e.g from Step 1) to find the values of the other variable.

6 Your Go If π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐=0 π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž A 𝑦= π‘₯ 2 βˆ’3π‘₯+4 𝑦=π‘₯+1 B Solve the following, giving your solutions correct to 3 significant figures. π‘₯ 2 + 𝑦 2 =7 2π‘₯+𝑦=1 Note that no β€˜Step 1’ is needed here because 𝑦 is already the subject of the linear equation. 𝒙+𝟏= 𝒙 𝟐 βˆ’πŸ‘π’™+πŸ’ 𝒙 𝟐 βˆ’πŸ’π’™+πŸ‘=𝟎 π’™βˆ’πŸ π’™βˆ’πŸ‘ =𝟎 𝒙=𝟏, 𝒙=πŸ‘ π’š=𝟐, π’š=πŸ’ ? Bro Tip: β€œCorrect to 3 significant figures” suggests we won’t have a nice solution, and hence we’ll have to use the quadratic formula. ? π’š=πŸβˆ’πŸπ’™ 𝒙 𝟐 + πŸβˆ’πŸπ’™ 𝟐 =πŸ• 𝒙 𝟐 +πŸβˆ’πŸ’π’™+πŸ’ 𝒙 𝟐 =πŸ• πŸ“ 𝒙 𝟐 βˆ’πŸ’π’™βˆ’πŸ”=𝟎 𝒂=πŸ“, 𝒃=βˆ’πŸ’, 𝒄=βˆ’πŸ” 𝒙= πŸ’Β± βˆ’πŸ’ 𝟐 βˆ’(πŸ’Γ—πŸ“Γ—βˆ’πŸ”) 𝟏𝟎 𝒙=βˆ’πŸŽ.πŸ•πŸ”πŸ” 𝒐𝒓 𝒙=𝟏.πŸ“πŸ• π’š=𝟐.πŸ“πŸ‘ 𝒐𝒓 π’š=βˆ’πŸ.πŸπŸ‘ I personally like using arrows because it makes clear which value of 𝑦 corresponds to which π‘₯.

7 Exercises ? ? ? ? ? ? ? ? Solve π‘₯ 2 + 𝑦 2 =9, π‘₯+𝑦=2
(on provided sheet) Solve: π‘₯+𝑦= π‘₯ 2 + 𝑦 2 =5 𝒙=𝟏, π’š=𝟐 𝒐𝒓 𝒙=𝟐, π’š=𝟏 [AQA IGCSEFM June 2012 Paper 2 Q19] Solve the following: π‘₯+𝑦=4 𝑦 2 =4π‘₯+5 𝒙=𝟏, π’š=πŸ‘ 𝐨𝐫 𝒙=𝟏𝟏, π’š=βˆ’πŸ• 𝑦= π‘₯ π‘¦βˆ’5π‘₯=6 𝒙=βˆ’πŸ, π’š=𝟏 𝒐𝒓 𝒙=πŸ”, π’š=πŸ‘πŸ” [IGCSE Jan 2016(R)] Solve: 𝑦=3π‘₯+2 π‘₯ 2 + 𝑦 2 =20 𝒙=βˆ’πŸ, π’š=βˆ’πŸ’ 𝒐𝒓 𝒙= πŸ’ πŸ“ , π’š= 𝟐𝟐 πŸ“ 1 5 Solve π‘₯ 2 + 𝑦 2 =9, π‘₯+𝑦=2 Giving your answers correct to 2dp. 𝒙=βˆ’πŸŽ.πŸ–πŸ•, π’š=𝟐.πŸ–πŸ• 𝒐𝒓 𝒙=𝟐.πŸ–πŸ•, π’š=βˆ’πŸŽ.πŸ–πŸ• Solve π‘₯ 2 + 𝑦 2 =20 𝑦=10βˆ’2π‘₯ 𝒙=πŸ’, π’š=𝟐 (only) Solve 𝑦=π‘₯+2, 𝑦 2 =4π‘₯+5 𝒙=𝟏, π’š=πŸ‘ 𝒐𝒓 𝒙=βˆ’πŸ, π’š=𝟏 Solve π‘₯=2𝑦, π‘₯ 2 βˆ’ 𝑦 2 +π‘₯𝑦=20 𝒙=βˆ’πŸ’, π’š=βˆ’πŸ 𝒐𝒓 𝒙=πŸ’, π’š=𝟐 ? ? 2 6 ? ? 7 3 ? ? 4 8 ? ?

8 Exercises [IGCSE Edexcel 2016(R) 4H Q20] The lines with equations 𝑦= π‘₯ 2 +4 and 𝑦=π‘₯+10 intersect at the points 𝐴 and 𝐡. 𝑀 is the midpoint of 𝐴𝐡. Find the coordinates of 𝑀. [AQA IGCSEFM] Here are the equations of three lines. 𝑦= 1 2 π‘₯ 𝑦= 1 3 π‘₯+14 𝑦=2π‘₯βˆ’16 Do all three lines meet at a common point? Show how your decide. Solving first two equations: 𝟏 𝟐 𝒙+𝟏𝟏= 𝟏 πŸ‘ 𝒙+πŸπŸ’ 𝟏 πŸ” 𝒙=πŸ‘ 𝒙=πŸπŸ– π’š=𝟐𝟎 Checking with third equation: 𝟐𝟎=πŸ‘πŸ”βˆ’πŸπŸ”=𝟐𝟎 So lines do all meet. 9 10 ? [BMO] Solve the following: π‘₯ 2 βˆ’4𝑦+7=0 𝑦 2 βˆ’6𝑧+14=0 𝑧 2 βˆ’2π‘₯βˆ’7=0 Adding and completing the square: π’™βˆ’πŸ 𝟐 + π’šβˆ’πŸ 𝟐 + π’›βˆ’πŸ‘ 𝟐 =𝟎 Since anything squared is at least 0, only solution is 𝒙=𝟏, π’š=𝟐, 𝒛=πŸ‘ NN ? 𝑨 βˆ’πŸ,πŸ– , 𝑩 πŸ‘,πŸπŸ‘ , 𝑴 𝟎.πŸ“, 𝟏𝟎.πŸ“ ?


Download ppt "GCSE: Quadratic Simultaneous Equations"

Similar presentations


Ads by Google