Download presentation
Presentation is loading. Please wait.
Published byAmber Collins Modified over 6 years ago
1
2015 Xinjiang Pulsar and Gravitational-Wave School
星系并合与超大质量双黑洞 袁业飞(Ye-Fei Yuan) 中国科学技术大学天文学系 2015/10/25
2
Outline Basic Observations(SMBMB)
Hierarchical Models of Galaxy Formation Comic Evolution of MBHs BHB coalescence and Gravitational Waves
3
星系的并合
4
大质量黑洞的并合
5
超大质量黑洞双黑洞的观测 Komossa, et al., 2003, ApJL
6
超大质量黑洞双黑洞的观测 Fu, H et al., 2013, Nature
7
超大质量黑洞双黑洞的观测 NGC3393 Fabbiano 2011
8
超大质量黑洞双黑洞的观测 (z=0.055) Rodriguez 2006
9
超大质量黑洞双黑洞的观测 4C12.50 Begelman et al , 1980, Nature
10
超大质量黑洞双黑洞的观测 Komossa, et al., 2003, ApJL
11
超大质量黑洞双黑洞的观测 3C326 Merritt& Ekers, 2002; Liu 2004
12
超大质量黑洞双黑洞的观测 HE0450–2958 Magain et al. 2005, nature
13
超大质量黑洞双黑洞的观测 BL Lac object OJ287: p=11.86 yr (Sillapaa et al. 1988)
14
超大质量黑洞双黑洞的观测 Hayasaki 2009 Yan et al. 2015, ApJ
15
超大质量黑洞双黑洞的观测
16
Basic Observations Most local galaxies host MBHs (106-109Msun)
M-б(L) Relation (Ferrarese and Merritt 2000, Gebhardt et al 2000, Tremaine et al 2002) Co-evolution between galaxies, MBHs and QSOs Accretion history and Spins of MBHs (Soltan’s argument) (Yu and Tremanie 2002, Wang et al. 2006) Existence of SMBH (~109Msun) at z>6 (Fan et al. 2001; Barth et al. 2003; Willott et al. 2005)
17
High-z Supermassive BHs
Example: SDSS (Fan et al. 2003, Wu et al 2014) z= Mbh 4 x 109 M How did this SMBH grow so massive? e-folding (Edd) time: 4 x (/0.1) -1 107yr Mseed ~100 M Age of universe (z=6.43) 8 x 108 yr
18
Questions 1)Existence of SMBH at t<1Gyr, while
2)Much smaller BHs exist in 13Gyr old galaxies
19
Hierarchical Models of Galaxy Formation
20
History of the Universe
Barkana & Loeb, 2001, Phys. Rep.
21
Linear gravitational Growth
Density contrast: Basic equations: Linearizaton for small perturbation: Einstein-de Sitter Universe:
22
z=0: Small scale structure: nonlinear Large scale structure: linear
23
Statistical description of the density perturbation:Probability Functional
Gaussian Spectrum: Power Spectrum:
24
Mass fluctuation Zeldovich Spectrum: Transfer Function:
25
Mass fluctuation
26
Press-Schechter Theory(1974)
Problem: BCEK Theory (Bond et al. 1991)
27
Extended PS Theory(Lacey & Cole 1993)
28
Condensations in Hierarchical Cosmology
Consider linear growth of DM perturbations in concordance cosmology 30 20 collapse redshift Smallest scales condense first Jeans mass: ~104-5 M 10 2 3 4 5 6 7 log (Mass/ M)
29
Merging tree of dark matter halo and evolution of massive black holes
time
30
Dark matter Halo Merging Tree—A Self Adaptive Code
Time (Yuan et al. 2007)
31
Comic Evolution of SMBHs
32
Modeling the Gas in the First Halos: Cooling and Chemistry
Collapsed Dark Matter halos virialize, gas shock heated to virial temperature Efficient cooling is a necessary condition for continued contraction following virialization Primordial gas chemically simple: H, He, H2
33
Radiative Cooling Function (H+He gas)
COSMIC TIME MASS SCALE cf. Halo virial temperature: log( cooling rate / erg s-1 cm3 ) log( Temperature / K )
34
Cooling and Chemistry Molecular cooling to T~102 K (M~105 M ; z~20)
End of “Dark Age” controlled by abundance of H2 : (Saslaw & Zipoy 1967 Haiman, Thoul & Loeb 1996) Molecular cooling to T~102 K (M~105 M ; z~20) Atomic cooling to T~104 K (M~108 M ; z~12) What is the molecular abundance? nH2/nH ~10-6 after recombination ~10-3 in collapsed objects
35
3D Simulations of a Primordial Gas Cloud
Abel, Bryan & Norman (AMR) Bromm, Coppi & Larson (SPH) Mtot 106 M z 20 T200 K n 104 cm-3 M = few 100 M f* < 1 % Temperature Density Gas Phase Chemistry: H + e- H- + H-+ H H2+ e-
36
What forms in these early halos?
STARS: FIRST GENERATION METAL FREE - massive stars with harder spectra - boost in ionizing photon rate by a factor of ~ 20 - return to “normal” stellar pops at Z≳ Z⊙ (Tumlinson & Shull 2001 ; Bromm, Kudritzki & Loeb 2001; Schaerer 2002) SEED BLACK HOLES: (~102-6 M⊙ ) - boost by ~10 in number of ionizing photons/baryon - harder spectra up to hard X-rays - must eventually evolve to quasars and remnant holes [to z~6 super-massive BHs; probed by gravity waves] (Oh; Venkatesan & Shull; Haiman, Abel & Rees; Haiman & Menou)
37
Remnants of Massive Stars
Heger et al (for single, non-rotating stars) Z=Z metalicity Z=0 10M M 40M M M
38
Formation of seed BH Direct formation from a collapsing gas cloud?
The loss of angular momentum Turbulent viscosity Global dynamical instabilities Formation of the seed BH Supermassive star BH Quasi-star (a small BH + envelope) (Begelman et al. 2007)
39
z=10, T=300K z=20 z=10, T=4000 z=20 Lodato & Natarajan 2007
40
Remnant of Pop. III stars
First star (z>10) forms at high –бpeaks of the primordial density field Top heavy stellar IMF: inefficient cooling of zero metallicity gas Little mass loss: zero metallicity star
41
First generation of stars are simpler in principle to model:
Metal Free Gas Cooling Pop III Star Formation First generation of stars are simpler in principle to model: Chemistry of unenriched gas is simpler Gas has not yet been ionized or disturbed by winds from other stars Model Results Massive & short lived Early objects zcoll~ 20-30 H2 controls cooling Yoshida, Omukai, Hernquist, & Abel (2006)
42
Observational tests of seed formation
Gravitational waves from seeds merging (LISA) Integrated BH mass density Volonteri et al. 2007
43
Cosmic evolution of SMBHs
Seed black hole: Total accreted Mass: Spin change by accretion: SSD Model MHD Model (McKinney & Gammie 2004; Shapiro 2005)
44
Volonteri, Haardt, Madau, 2003
Dynamical Evolution of BH Binaries Gravitational slingshot (BHB interaction with background stars) Gravitational radiation Spin change by coalescences Test particle approximation The spin of the newly formed black hole after merging is the summation of the spin of the heavier BH in the binary and the angular momentum of the lighter one at ISCO. Triple BH interactions Volonteri, Haardt, Madau, 2003
45
Volonteri, M. et al. 2005
46
Distribution of BH spins
(Yuan et al. 2007)
47
Distribution of accretion efficiencies
(Yuan et al. 2007)
48
LF of QSOs Xu, Yuan et al, 2015, RAA
49
Xu, Yuan et al, 2015, RAA
50
BHB coalescence and Gravitational Waves
51
Gravitational radiation:
52
The mean comoving number density of potential BH pairs
M1+M2<105,106 M1/M2=10-1,-2,-3 M1<105,106
53
M1=M2=1.1x105Msun z=13 Koushiappas & Zentner 2006
54
S/N>1 Z=12 recoil z=16 S/N>5 Koushiappas & Zentner 2006
55
recoil Z=16 Koushiappas & Zentner 2006
56
Model dependent results
(e.g. Sesana, Volonteri, Haardt 2007) Pop III KBD BVRlf,hf
57
S/N>5, LISA 3-year mission
58
Gong X. F & Xu S. N. & Shan B. et al. , 2012 Class. Quantum Grav
59
Gong X. F & Xu S. N. & Shan B. et al. , 2012 Class. Quantum Grav
60
Thanks!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.