Presentation is loading. Please wait.

Presentation is loading. Please wait.

R.H. Matjiea,b, Zhongsheng Lic, Colin R. Wardc

Similar presentations


Presentation on theme: "R.H. Matjiea,b, Zhongsheng Lic, Colin R. Wardc"— Presentation transcript:

1 R.H. Matjiea,b, Zhongsheng Lic, Colin R. Wardc
DETERMINATION OF MINERAL MATTER AND ELEMENTAL COMPOSITION OF INDIVIDUAL MACERALS IN COALS FROM HIGHVELD MINES R.H. Matjiea,b, Zhongsheng Lic, Colin R. Wardc a Sasol Technology (Pty) Ltd, P.O. Box 1, Sasolburg, Free State 1947, South Africa b Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002, South Africa c School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

2 OUTLINE Introduction and background Objectives Experimental Results Conclusions Acknowledgements

3 BACKGROUND

4

5 OUTLINE Introduction and background Objectives Experimental Results Conclusions Acknowledgements

6 Objectives Characterise coals from mines in the Highveld coalfield, in order to gain a better understanding of the mineralogical and chemical properties of the individual components in the feedstocks used for coal conversion processes; Improve the understanding of problems (e.g. abrasion, stickiness, slagging, sintering, corrosion and pollution) associated with coal handling and use. BACKGROUND

7 OUTLINE Introduction and background Objectives Experimental Results Conclusions Acknowledgements

8 Conventional and advanced analytical
techniques employed to analyse coals Chemical Analysis: Proximate analysis (percentages of moisture, ash and volatile matter) Ultimate analysis (C, H, N, O and S) XRF – analysis of inorganic elements in whole-coal or coal ash Low-temperature Ashing: Determine the mineral matter percentage in the coal samples Isolate the minerals for XRD analysis (including clay fraction) Mineralogical Analysis: XRD – identify the minerals and quantify the mineral phases in the LTA using the Rietveld-based SIROQUANT technique

9 Low-temperature ashing X-ray diffraction
Petrographic Analysis: Determine the types and proportions of maceral groups in each of the coals, and the rank by vitrinite reflectance Electron Microprobe Analysis: Detemine the elemental composition of the individual macerals in each coal sample

10 Cameca SX-50 Electron Microprobe
Element Line Crystal Count Standard Time (s) C Kα PC Anthracite N Kα PC BN O Kα PC Sanidine Al Kα TAP 10 Sanidine Si Kα TAP 10 Diopside S Kα PET 10 Marcasite Ca Kα PET 10 Diopside Fe Lα PC Marcasite Ti Kα PET 10 Rutile Mg Kα TAP Diopside K Kα PET 10 Sanidine Accelerating voltage 10 kV Beam current nA Beam diameter µm

11 Sampling from the coal mines

12 OUTLINE Introduction and background Objectives Experimental Results Conclusions Acknowledgements

13 Proximate analyses of coals tested (air-dried basis)
Sample Number 1 2 3 4 5 6 Moisture (%) 3.3 2.9 3.2 3.4 3.0 3.8 Ash (%) 24.5 29.0 29.7 27.2 26.8 22.1 Volatile matter (%) 21.7 22.9 21.3 21.5 22.4 23.1 Fixed carbon (%) 50.5 45.2 45.8 47.9 47.8 51.0 Total sulphur (%) 1.1 1.0 0.8 0.7 Volatile matter (daf basis, %) 30.1 33.6 31.7 31.0 31.9 31.2

14 Ultimate analyses of coals tested (dry, ash-free basis)
Sample Number 1 2 3 4 5 6 Carbon (%) 79.9 78.5 77.1 77.8 79.0 77.9 Hydrogen (%) 4.36 4.55 4.07 4.12 4.59 4.29 Nitrogen (%) 2.12 2.00 1.97 2.08 Total sulphur (%) 1.55 1.41 1.15 1.50 1.62 0.92 Oxygen (% by difference). 12.1 13.5 15.7 14.6 12.7 14.9

15 X-ray diffractograms of low-temperature ashes

16 Mineralogical analyses of LTA from coal samples
1 2 3 4 5 6 LTA 31.9 43.9 33.6 24.6 36.2 34.5 Quartz 17.6 21.5 20.1 18.3 15.2 20.6 Kaolinite 51.4 50.4 50.8 47.6 44.0 49.5 Illite bld 5.7 5.3 2.2 Mica 10.4 7.4 4.5 6.9 7.0 Calcite 2.1 1.2 1.8 4.6 9.8 2.7 Dolomite 10.3 6.4 10.2 10.0 11.7 Siderite 0.0 1.3 0.3 1.4 0.4 0.9 Pyrite 2.4 2.6 2.0 1.6 Bassanite 1.9 2.5 Goyazite 1.0 1.7 3.0 Anatase 1.5 0.8

17 Inferred ash chemistry (inorganic oxides, wt%) from mineral percentages and mineral compositions
Sample 1 2 3 4 5 6 SiO2 55.2 59.3 56.2 51.3 57.6 54.0 Al2O3 28.9 29.1 27.5 28.2 28.5 26.6 Fe2O3 1.9 2.0 1.5 2.3 2.7 TiO2 3.2 1.7 1.2 1.0 P2O5 0.4 0.7 1.1 1.3 0.6 CaO 6.3 3.9 7.3 12.2 6.0 10.3 MgO 1.6 3.1 4.1 Na2O 0.0 K2O 0.9 Total 100.0

18 Measured inorganic oxide percentages (wt %) from normalised XRF analysis of whole-coal samples
Sample Number 1 2 3 4 5 6 SiO2 57.16 55.38 55.91 52.20 57.43 55.68 Al2O3 24.96 30.21 27.78 29.40 26.70 25.31 Fe2O3 5.13 2.34 1.88 2.42 3.58 2.59 TiO2 1.21 1.26 1.42 1.64 1.17 1.33 P2O5 0.32 0.76 0.53 0.86 0.89 0.68 CaO 7.49 6.54 8.26 9.27 7.03 10.60 MgO 1.67 2.02 1.84 1.23 2.06 Na2O 1.06 1.07 0.85 K2O 0.95 1.02 1.29 1.13 0.54

19 Mineralogy of <2 micron fraction of LTA by oriented aggregate XRD
Sample Number Kaolinite % Illite % Expandable Clay % Nature of Expandable Clay 1 93 6 Mainly smectite 2 92 3 5 Mainly irregular I/S 4 96 Regular to irregular I/S 90 8 Smectite + regular I/S

20

21 Petrographic analysis of coal samples (volume %, mineral free)
Maceral Group 1 2 3 4 5 6 Vitrinite (%) 19.2 25.8 20.5 20.6 31.6 27.1 Liptinite (%) 3.5 3.7 3.2 3.4 5.4 Inertinite (%) 77.3 70.6 76.3 76.1 64.0 67.5 Rvmax (%) 0.72 0.70 0.75

22 Elemental composition of macerals in coal samples
by electron microprobe analysis Maceral Points C% N% O% Mg% Al% Si% S% K% Ca% Ti% Fe% Sample 1 TC 23 73.24 2.38 18.97 0.01 0.06 0.65 0.00 0.10 0.55 0.02 DSC 12 74.82 2.46 17.39 0.11 0.67 0.44 SF 15 84.40 0.98 10.21 0.04 0.30 0.07 FUS 16 85.73 0.84 8.68 0.03 0.09 0.25 0.13 Sample 2 74.34 2.29 18.00 0.79 0.38 22 78.56 1.94 14.71 0.12 0.58 0.22 7 88.28 0.23 7.07 0.24 89.28 0.75 6.31 0.36 0.15 Key: TC = telocollinite, DSC = desmocollinite, SP = sporinite, CUT = cutinite, SF = semifusinite, FUS = fusinite, IDT = inertodetrinite. Pts = number of points analysed for indicated maceral.

23 Elemental composition of macerals in coal samples
by electron microprobe analysis Maceral Points C% N% O% Mg% Al% Si% S% K% Ca% Ti% Fe% Sample 4 TC 23 77.32 1.93 16.02 0.01 0.10 0.39 0.03 0.06 0.42 0.00 DSC 17 77.67 2.10 15.24 0.17 0.16 0.40 0.02 0.07 0.45 SF 12 85.46 0.81 9.16 0.19 0.09 FUS 14 86.36 0.99 8.43 0.04 0.18 Sample 5 33 75.39 17.96 0.24 0.80 19 76.47 2.19 16.80 0.87 0.08 SP 1 79.70 1.89 15.00 0.54 0.53 1.14 6 86.26 0.94 9.48 0.34 8 89.22 0.43 7.39 0.37 0.12 IDT 2 90.90 1.52 5.77 0.13 0.33 Key: TC = telocollinite, DSC = desmocollinite, SP = sporinite, CUT = cutinite, SF = semifusinite, FUS = fusinite, IDT = inertodetrinite

24 Elemental composition of macerals in coal samples
by electron microprobe analysis Maceral Points C% N% O% Mg% Al% Si% S% K% Ca% Ti% Fe% Sample 3 TC 15 73.17 2.41 19.83 0.01 0.41 0.33 0.76 0.05 0.06 0.38 0.00 DSC 12 74.49 2.31 18.62 0.40 0.25 0.77 0.08 0.07 SF 10 81.04 1.66 13.03 0.02 0.22 0.42 FUS 14 83.11 1.00 11.41 0.36 0.11 Sample 6 29 69.51 2.67 23.38 0.19 0.46 0.12 21 70.06 2.55 22.06 0.20 0.47 0.17 CUT 2 76.49 1.61 16.03 0.18 0.35 SP 4 77.04 1.84 14.28 0.29 0.09 0.93 18 80.39 1.25 12.64 0.04 0.03 0.14 85.05 0.72 9.40 0.10 0.26 IDT 5 90.13 0.68 4.23 0.43 Key: TC = telocollinite, DSC = desmocollinite, SP = sporinite, CUT = cutinite, SF = semifusinite, FUS = fusinite, IDT = inertodetrinite

25 Elements in Coal Macerals
Element Vitrinite Inertinite Carbon % % Oxygen % % Nitrogen % % Organic sulphur % % Titanium up to 0.4% < 0.02% Notes: Carbon more abundant in inertinite; oxygen more abundant in vitrinite Organic sulphur, nitrogen and titanium are more abundant in vitrinite than inertinite

26 Comparison of microprobe data (maceral composition and maceral percentage) and dry, ash-free ultimate analysis data Ultimate (dry ash-free) Carbon (daf %) 79.9 78.5 77.1 77.8 79.0 77.9 Oxygen (daf %) 12.1 13.5 15.7 14.6 12.7 14.9 Nitrogen (daf %) 2.12 2.00 1.97 2.08 Total sulphur (daf %) 1.55 1.41 1.15 1.50 1.62 0.92 Hydrogen (daf %) 4.36 4.55 4.07 4.12 4.59 4.29  Total 100.0 Whole coal inferred from probe 1 2 3 4 5 6 Carbon (%) 82.1 84.4 80.3 84.2 83.3 Oxygen (%) 11.9 10.1 13.7 10.2 11.8 Nitrogen (%) 1.3 1.0 1.5 1.1 1.2 Organic sulphur (%) 0.4 0.5 0.2 0.3

27 OUTLINE Introduction and background Objectives Experimental Results Conclusions Acknowledgements

28 Conclusions A range of conventional and advanced analytical techniques, including whole-coal X-ray fluorescence, low-temperature ashing, quantitative X-ray diffraction and electron microprobe analysis, have been used to evaluate the mineral and organic matter in coals from the different Highveld coal mines, used as feedstock to combustion and gasification processes. The combination of techniques allows better evaluation of the proportions of fluxing minerals (pyrite, dolomite and calcite) and organically-bound inorganic elements that are responsible for clinker formation, as well as for volatilisation of inorganic elements, during coal conversion processes.

29


Download ppt "R.H. Matjiea,b, Zhongsheng Lic, Colin R. Wardc"

Similar presentations


Ads by Google