Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright © John O’Connor For non-commercial purposes only….. Enjoy!

Similar presentations


Presentation on theme: "Copyright © John O’Connor For non-commercial purposes only….. Enjoy!"— Presentation transcript:

1 Copyright © John O’Connor For non-commercial purposes only….. Enjoy!
Vectors and Scalars Copyright © John O’Connor St. Farnan’s PPS Prosperous For non-commercial purposes only….. Enjoy! Comments/suggestions please to the SLSS physics website forum @

2 In this section you will learn:
The difference between vector and scalar quanities and examples of each. The parallogram and triangle laws for finding the resultant of two vectors. Do an experiment to find the resultant of two forces. Learn how to resolve a vector into its perpendicular components.

3 A scalar quantity is a quantity that has magnitude only and has no direction in space
Examples of Scalar Quantities: Length Area Volume Time Mass

4 A vector quantity is a quantity that has both magnitude and a direction in space
Examples of Vector Quantities: Displacement Velocity Acceleration Force

5 Vector diagrams are shown using an arrow
The length of the arrow represents its magnitude The direction of the arrow shows its direction

6 The resultant is the sum or the combined effect of two vector quantities
Vectors in the same direction: 6 N 4 N = 10 N 6 m = 10 m 4 m Vectors in opposite directions: 6 m s m s-1 = 4 m s-1 6 N 10 N = 4 N

7 When two vectors are joined tail to tail
Complete the parallelogram The resultant is found by drawing the diagonal When two vectors are joined head to tail Draw the resultant vector by completing the triangle

8 Complete the parallelogram (rectangle)
2004 HL Section B Q5 (a) Two forces are applied to a body, as shown. What is the magnitude and direction of the resultant force acting on the body? Solution: Complete the parallelogram (rectangle) The diagonal of the parallelogram ac represents the resultant force The magnitude of the resultant is found using Pythagoras’ Theorem on the triangle abc 12 N a d θ 13 N 5 N 5 b c 12 Resultant displacement is 13 N 67º with the 5 N force

9 resultant of the three forces shown below.
Find the magnitude (correct to two decimal places) and direction of the resultant of the three forces shown below. Solution: Find the resultant of the two 5 N forces first (do right angles first) 5 d c 7.07 N Now find the resultant of the 10 N and N forces 5 N 5 90º The 2 forces are in a straight line (45º º = 180º) and in opposite directions 45º θ a b 5 N 135º So, Resultant = 10 N – 7.07 N = 2.93 N in the direction of the 10 N force 10 N 2.93 N

10 What is a scalar quantity?
Give 2 examples What is a vector quantity? How are vectors represented? What is the resultant of 2 vector quantities? What is the triangle law? What is the parallelogram law?

11 Here a vector v is resolved into an x component and a y component
When resolving a vector into components we are doing the opposite to finding the resultant We usually resolve a vector into components that are perpendicular to each other Here a vector v is resolved into an x component and a y component v y x

12 Here we see a table being pulled by a force of 50 N at a 30º angle to the horizontal
When resolved we see that this is the same as pulling the table up with a force of 25 N and pulling it horizontally with a force of 43.3 N 50 N y=25 N 30º x=43.3 N We can see that it would be more efficient to pull the table with a horizontal force of 50 N

13 If a vector of magnitude v and makes an angle θ with the horizontal then the magnitude of the components are: x = v Cos θ y = v Sin θ v y=v Sin θ y θ x=v Cos θ x Proof:

14 2002 HL Sample Paper Section B Q5 (a)
A force of 15 N acts on a box as shown. What is the horizontal component of the force? Solution: 12.99 N Component Vertical 15 N 60º Horizontal Component 7.5 N

15 2003 HL Section B Q6 Solution:
A person in a wheelchair is moving up a ramp at constant speed. Their total weight is 900 N. The ramp makes an angle of 10º with the horizontal. Calculate the force required to keep the wheelchair moving at constant speed up the ramp. (You may ignore the effects of friction). Solution: If the wheelchair is moving at constant speed (no acceleration), then the force that moves it up the ramp must be the same as the component of it’s weight parallel to the ramp. Complete the parallelogram. Component of weight parallel to ramp: N 10º 80º 10º Component of weight perpendicular to ramp: N 900 N

16 If a vector of magnitude v has two perpendicular components x and y, and v makes and angle θ with the x component then the magnitude of the components are: x= v Cos θ y= v Sin θ v y=v Sin θ y θ x=v Cosθ

17 If a vector of magnitude v has two perpendicular components x and y, and v makes and angle θ with the x component then the magnitude of the components are: x= v Cos θ y= v Sin θ v y=v Sin θ y θ x=v Cosθ


Download ppt "Copyright © John O’Connor For non-commercial purposes only….. Enjoy!"

Similar presentations


Ads by Google