Presentation is loading. Please wait.

Presentation is loading. Please wait.

LHCb Physics Program On behalf of LHCb collaboration M.N Minard (LAPP)

Similar presentations


Presentation on theme: "LHCb Physics Program On behalf of LHCb collaboration M.N Minard (LAPP)"— Presentation transcript:

1 LHCb Physics Program On behalf of LHCb collaboration M.N Minard (LAPP)
Status LHCb ( R.Jacobson) Single arm spectrometer B- physics dedicated M.N Minard Aspen Winter Meeting 2009

2 Improve precision on CKM parameters
Impressive results from B factories & K sector Good agreement with SM Indirect Direct measurement b->s transitions emerging Tevatron results Belle LHCb domain Strong constraints from SM on KM sector Direct g measurement :LHCb M.N Minard Aspen Winter Meeting 2009

3 LHCb hints for NP Hints for NP contribution in loop processes as tree and box / penguin diagrams. NP from CPV domain precision measurements : Observe deviations from SM expectations Confront measurements between channels expecting different NP interference Fs , mixing phase of the Bs system g measurements NP from rare decays high precision measurements : Branching ratio Time asymmetry measurements EW penguin Radiative penguin Strong penguin Oscillation box M.N Minard Aspen Winter Meeting 2009

4 LHCb apparatus caracteristics
High statistics on all b and c species : 2fb-1: 1012 bb pairs Heavy flavor precision experiment Lepton and hadron trigger Efficient particle ID Decay time resolution Flavour tagging btag Bs K K p+, K  Ds Primary vertex proper time resolution ~ 40 fs BsDs(KKπ)K B0-> J/y K0s Sensitivity: 236k events/2 fb-1 s(sin2b) = 0.020 [B factories: (850 fb1)] Bs→ Ds K Bs →Ds p ε(KK) : 97% ε(πK) : 5% M.N Minard Aspen Winter Meeting 2009

5 Bs mixing phase s M.N Minard Aspen Winter Meeting 2009

6 Bs phase Fs +NP? b c b t W B0s B0s s s W
Lifetime B0s, B0s distributions give oscillation pattern of frequency ms and amplitude ~ sins trough the phase in the mixing box diagram. s =-2bs Φs can be extracted from CP time-dependent asymmetry decay rates : with nf = ±1 CP eigenstate Bs  J/Ψ η, Bs  J/Ψ η’, Bs  ηc Φ Bd  Ds+ Ds- CP eigenstate Bs -> J/Ψ f , mixing +-1 CP eigenstate NP may modify the mixing phase M.N Minard Aspen Winter Meeting 2009

7 Bs phase Fs (2) Current results from Tevatron:
D bs= with 2.8 fb-1 CDF bs = 68%CL with 2.8 fb-1 Use of pure CP eigenstates statistic limited Bs -> J/Ψ  large yield, low background mixture of CP = +1 and CP = -1 states angular analysis to disentangle the two states SM FS(Bs -> J/Ψ ) = -2bs = ± s(ΔGs/Gs) = 0.0092 With 10 fb-1 stat(Fs) 0.009 > 3 for non-zero Fs of SM M.N Minard Aspen Winter Meeting 2009

8 Room for NP in Bs mixing The effects of New Physics in the oscillation can be parameterized as: arXiv: M.N Minard Aspen Winter Meeting 2009 8

9 bsss hadronic penguin decays
In SM CP violation < 1% due to cancellation of the mixing and penguin phase: Bs  SM  2 arg(Vts*Vtb) – arg(VtsVtb*) = 0 In presence of NP expect different contributions in boxes and in penguins: Bs  NP = MixingNP - DecayNP + NP? Vtb Vts Mixing box + NP? Mixing CP asymmetry angular analysis & time dependance of flavour tagged events For 2 fb–1 stat(SM) = 0.11 Bd related quark penguin Bd  f KS & Bd  J/yKS expected precision: (sin(2eff)) ≈0.23 Channel Yield (2 fb-1) B/S (90%CL) Bs  f f 3100 < 0.8 Bd  f KS 920 < 1.1 M.N Minard Aspen Winter Meeting 2009

10 g related measurements
M.N Minard Aspen Winter Meeting 2009

11 Fs+  from Bs  DsK 2 Trees : b->c & b->u interfere through Bs mixing Measure Fs+g . Ratio extracted from data Channel Yield (2 fb-1) B/S (90%CL) Bs  DsK 6200 < 0.2 Bs  Ds  140 k 0.4 p-K id Bs→ Ds-p+ Bs→ Ds-K+ Include Bs Dsp to constrain Dms Fit time-dependent rates of Bs→DsK and Bs→Dsp Fs +  9-12 ms 0.007 ps-1 Sensitivity with 2fb–1: M.N Minard Aspen Winter Meeting 2009

12 g from trees: BDK fD(CP)K– D0K– B– fD(K+p-)K– fD(K-p+)K– _ bc bu
Two tree amplitudes (bc & bu) interfere in decays to a common D0 and D0 state fD Exploit interference according the decay mode ( analysis from B-factories). GLW : CP eigenstate of D (*)0 D0-> K+K-/p+p- , Ksp0 ADS : Use common flavor state - doubly cabbibo supressed D0-> K+p- Lower event rate / large asymmetry - Favoured mode: Large event rate / tiny asymmetry Dalitz for 3 body decays _ For each mode parameters g,(rb,db) fD(K+p-)K– D0K– bc bu B– fD(CP)K– fD(K-p+)K– M.N Minard Aspen Winter Meeting 2009 12

13 g from loops: B0d/sh+h-
Interference of bu tree & bd(s) penguin diagrams leads to CP violation depending on g (Sensitive to NP) Adir & Amix depend on mixing phase 2b,g, and ratio of penguin to tree amplitudes = d eiq B0 p+p- and Bs0  K+K- (d->s) diagrams U-spin symmetry. 4observables: (Adir & Amix )pp, (Adir & Amix )kk Parameters : g, penguin to tree amplitudes (d eiq) pp, , kk NP decay Yield (2fb-1) B/S B0 p+p- 36k 0.5 Bs0  K+K- 1.5 s(g) In 2fb-1 10° Compare to g from trees to get hints of NP in penguins M.N Minard Aspen Winter Meeting 2009 13

14 g from trees: BDK tree HLT trigger K-p PID Mass resolution
B mode D mode Method Yield (2fb-1) sensitivity Parameter Bs→DsK KKp tagged, ACP(t) 6.2K g+2bs B+→D K+ favo Kp ADS 56K 8.2 9.6 ° Strong phases g suppr * KK/pp counting, GLW 8.6k B± D0 K± K3p 61K B± D0*K± D0p0/D0g GLW +ADS 42K K+K-p+p GLW Dalitz 1.7 18° B0 D0K*0 Kp,KK,pp ADS+GLW 5K 6-25 B→pp,KK - tagged, ACP(t) 36K 10 g /bd / bs HLT trigger K-p PID Mass resolution tree Global fit from ADS/GLW under dB°assumption =35° Rb Combine tree – 2fb-1 s(g) : 4° M.N Minard Aspen Winter Meeting 2009

15 Rare decays M.N Minard Aspen Winter Meeting 2009

16 Rare decays seeking for NP
Z, m+ m- g g NP? in BR(SM) BR exp @ LHCb Large Theory Error On br Bsfg g polarization ( ) Belle’08 dC7 B0K*m+m- ( )·10-6 B factories angular distributions dC7, dC9 «  Bsm+m- (3.35±0.32)·10-9 helicity suppressed TeVatron @ 90% CL (2 fb-1) < 4510-9 BR S-P coupling M.N Minard Aspen Winter Meeting 2009

17 Bs  mm Ex: NUHM1 Helicity suppressed – NP sensitivity
in SM: BR(Bs→mm) (3.35 ± 0.32) x 10-9 Enhancement from SUSY model : BR(Bs→ mm)  tan6b/MH2 Sensitive to new physics coupling with Scalar & pseudo scalar Ex : Possible enhancement BR(Bs+-)~20x10-9 J.Ellis et al. arXiv: v1 [hep-ph] (2007) M.N Minard Aspen Winter Meeting 2009

18 Bs  mm Analysis relies on : (arbitrary normalization)
Geometry Likelihood (GL) : geometrical properties ( muon IPS, B lifetime, isolation, IP) Good mass resolution Particle ID : DLL (-) & DLL(-K) - Sensitive Region: GL > 0.5 - Statistical method applied to separate signal from background SM BR, in 2fb-1 21 signal events 172 background events (arbitrary normalization) (arbitrary normalization) Major uncertainty on BR from relative Bs,B+ hadronization fractions 14%. Bs branching ratio determination useful M.N Minard Aspen Winter Meeting 2009

19 Bs  mm 90% exclusion Main uncertainty hadronization fraction
Expected CDF+D0 limit 8fb-1 90% exclusion Main uncertainty hadronization fraction Within SM BR: 2 fb–1  3 evidence 10 fb–1  5 observation M.N Minard Aspen Winter Meeting 2009

20 B0K0*m+m- NP NP can affect:
, Z0 Suppressed Loop FCNC process (EW penguins) Several observables to test the dynamics Afb (s=mll2) Angular distributions: ql, f, qK* Invariant mass m+m- s =(mmm)2 =q2 NP can affect: Forward-backward asymmetry AFB(s) in ql distribution Dependence on s (predicted by several models) Zero of AFB(s) SM s0= GeV2/c4 NP Example 2 fb-1 experiment 10 fb (s0)=0.28) Afb Mmm2 (GeV2) M.N Minard Aspen Winter Meeting 2009

21 g polarization in Bs  fg
Bsfg FCNC radiative penguin Time dependent CP asymmetry probe SM/NP Adir  0, Amix  sin2y sin2f , AD  cos 2y cosf tan y = |b→s g R| / | b→s g L|~ cos f  1 In SM : C =0 , S= sin2y sinf , Ad = sin2y cosf Sensitivity ; s(C) , s(S ) = fb-1 SM extensions (left-right-symmetric, unconstrained MSSM) predict large tan y while no change on inclusive BR (bsg) M.N Minard Aspen Winter Meeting 2009

22 Conclusions LHCb is looking forward for the 1st collisions
Interesting results can comme early ( 0.5 fb-1) Bs→ J/j f Fs measurement with 0.05 precision Bs -> mm BR limit close SM value Direct g measurement s(g) 10° LHCb able to provide strong improvement in Bs sector Potential and channels variety allows field for indirect NP discovery M.N Minard Aspen Winter Meeting 2009

23 Backup M.N Minard Aspen Winter Meeting 2009

24 Physics from (very) first data
Exploit minimum bias data (almost no trigger) 108 minimum 2kHz S= σmb σ∙ε ∙Nmb Number of selected signal events: M.N Minard Aspen Winter Meeting 2009

25 Also studying Lepton Flavour Violation in 
Sensitivities for 100 fb-1 Also studying Lepton Flavour Violation in  M.N Minard Aspen Winter Meeting 2009

26 Upgrade Increase L0 hadron bandwidth Manage a factor 110 in luminosity
Go from 1Mhz to 40 Mhz data flow Implications : Electronics and detector upgrade is being investigated Change Vertex Locator to pixels 3D device M.N Minard Aspen Winter Meeting 2009

27 Rare decays B0  K*(K+p-)m+m- Bs  f(K+K-)g Bs m+m-
In the SM, b  s only through loops (FCNC) implies: Processes are rare Powerful to find/constraint NP! Operator Product Expansion parametrize new physics effects through # b  s observables : Observables are functions ofC’s. Branching ratios (BR) Cs Polarizations (C9) Angular distributions (C7/C9) Three examples for LHCb: B0  K*(K+p-)m+m- Bs  f(K+K-)g Bs m+m- M.N Minard Aspen Winter Meeting 2009

28 Full 3D Angular Analysis
M.N Minard Aspen Winter Meeting 2009

29 M.N Minard Aspen Winter Meeting 2009

30 Charm Physics Sensitivity to NP : loop diagrams involves d quarks
Mixing Mixing observed in Babar & Belle x = 0.89± % y = 0.75± % . Time-dependent D0 mixing with wrong-sign D0K+– decays . Direct CP violation in D0K+K– M.N Minard Aspen Winter Meeting 2009

31 With luminosity increase level of interest emerge: 0.5 fb-1
Bs→ J/j f : 0.05 precision on bs Bs -> mm : improved limit 2 fb -1 (1year) CPV g from tree : 5 g from penguins 10 Bs mixing phase : bs eff from penguins : 0.11 Rare decays s0 0.5 GeV2 from BK*mm Bs -> mm at 5 s 10fb-1 CPV g from tree & loop : 4 g from penguins : 6 Bs mixing phase : MS level Rare decays s0 0.3 GeV2 from BK*mm Bs -> mm SM at 5 s Bs-> fg s(Ad) =0.09 M.N Minard Aspen Winter Meeting 2009

32 Room for NP in Bs mixing s hs hs ASLs LHCb expects
Ligeti, Paucci,Perez, hep-ph/ New Physics in Bs mixing amplitude M12 parameterized with hs and s: s 2006 including ms measurement Additional constraints can come from semileptonic Asymmetry. In SM: ASLs 10-5:. BsDsn ASLs With 2bs from Bs J/ LHCb 2fb-1 hs LHCb expects 109 events/ 2fb-1 d(ASLs )stat2x10-3 in 2fb-1 hs M.N Minard Aspen Winter Meeting 2009


Download ppt "LHCb Physics Program On behalf of LHCb collaboration M.N Minard (LAPP)"

Similar presentations


Ads by Google