Presentation is loading. Please wait.

Presentation is loading. Please wait.

Review COMPOSITE SANDWICH PANEL UNDER BUCKLING BEHAVIOUR

Similar presentations


Presentation on theme: "Review COMPOSITE SANDWICH PANEL UNDER BUCKLING BEHAVIOUR"— Presentation transcript:

1 Review COMPOSITE SANDWICH PANEL UNDER BUCKLING BEHAVIOUR
Joko Sedyono Supervisor: Dr Homa Hadavinia Department of Mechanical Engineering, Kingston University London, Roehampton Vale Friars Avenue London SW15 3DW

2 Content Introduction Buckling Under Monotonic Loading
Metal-Matrix Composites (MMC) Ceramic-Matrix Composites (CMC) Polymer-Matrix Composites (PMC) Buckling Under Monotonic Loading Buckling Under Impact Loading Method of Measurement of Out-of-Plane Deflection Point and Full Field Post Buckling

3 Introduction

4 Composite Material Two inherently different materials that when combined together (macroscopic scale) produce a material with properties that exceed the constituent material (Shafer, 2010)

5 Composites can be classified by their matrix material:
-Metal matrix composites (MMC’s) -Ceramic matrix composites (CMC’s) -Polymer matrix composites (PMC’s)

6 MMC - Metal Matrix Composites
-The matrix is relatively soft and flexible. -The reinforcement must have high strength and stiffness -Since the load must be transferred from the matrix to the reinforcement, the reinforcement-matrix bond must be strong. MMC use: -Two types of particulates ( dispersion strengthened alloys and regular particulate composites) -Or long fiber reinforcements Keulen, 2010

7 CMC – Ceramic Matrix Composites Polymer Matrix Composites
-The matrix is relatively hard and brittle -The reinforcement must have high tensile strength to arrest crack growth -The reinforcement must be free to pull out as a crack extends, so the reinforcement-matrix bond must be relatively weak Polymer Matrix Composites -The matrix is relatively soft and flexible -The reinforcement must have high strength and stiffness -Since the load must be transferred from matrix to reinforcement, the reinforcement-matrix bond must be strong (Keulen, 2010)

8 Polymer-Matrix Composites (PMC)

9 Table 2 Mechanical Properties of Polymer Matrix
Material Density (ρ) (g / cm3) Tensile Modulus (E) Gpa Strength (σ) Poisson's Ratio Cure Shrinkage (%) Thermoseta Epoxy 1.25 1.5 Polyester 1.27 Vinyl Ester (L) 1.22 PMR-15 1.32 3.90 0.0386 ACTPb 1.34 (H) 4.10 0.0827 Thermoplastica PEEK (Victrex) 1.31 3.24 0.1000 0.40 PPS (Ryton) 1.36 3.30 PSUL (Udel) 1.24 2.48 0.0703 0.37 PEI (Ultem) 3.00 0.1050 PAI (Torlon) 1.40 3.03 (H) LARC-TPI (Durimid) 1.37 3.45 0.1380 0.36 aCast at 23oC; L: lowest; H: highest bThermid 600 (National Starch and Chemical Corporation)

10 Fibre

11 Natural fibres

12

13

14 Table 8 Mechanical Properties of Fibres and Conventional Bulk Materials
Material Diameter (µm) Density (ρ) (g / cm3) Tensile Modulus (E) GPa Strength (σ) Specific Modulus (E/ρ) Strength (σ/ρ) Poisson's Ratio Melting Point (oC) F I B R E S G L A S S E-glass 10.0 2.54 72.4 3.45 29 1.36 0.20 1540 S-glass 2.49 86.9 4.30 35 1.73 0.22 P A N CARBON T-300 (Amoco) 7.0 1.76 231.0 3.65 131 2.07 AS-4 (Hercules) 1.80 248.0 4.07 138 2.26 T-40 (Amoco) 5.1 1.81 290.0 (H) 5.65 160 (H) 3.12 IM-7 (Hercules) 5.0 1.78 301.0 5.31 169 2.98 HMS-4 (Hercules) 8.0 345.0 2.48 192 1.38 GY-70 (BASF) 8.4 1.96 483.0 1.52 246 0.78 PITCH CARBON P-55 (Amoco) 2.00 380.0 1.90 190 0.95 P-100 (Amoco) 2.15 (H) 758.0 2.41 (H) 353 1.12 ARAMID Kevlar 49 (DuPont) 11.9 1.45 131.0 3.62 90 2.50 0.35 Kevlar 29 12.0 80.0 2.80 55 1.93 500 Kevlar 149 (DuPont) 1.47 179.0 122 2.35 Technora (Teijin) 1.39 70.0 3.00 50 2.16 EXTENDED CHAIN POLYETHYLENE Spectra 900 (Honeywell) 38.0 0.97 117.0 2.59 121 2.67 Spectra 1000 (Honeywell) 27.0 (L) 0.97 172.0 177 3.09 Boron 140.0 2.70 393.0 3.10 146 1.15 CERAMIC SiC Monofilament 3.08 400.0 3.44 130 SiC Nicalon (Nippon c.) multifilament 14.5 2.55 196.0 2.75 77 1.08 Al2O3 (Nexter 610 (3-M) 10-12 3.90 97 0.79 Al2O3 (Nexter 720 (3-M) 3.40 260.0 2.10 76 0.62 NATURAL Hemp 1.48 70 47 Flax 1.40 60-80 43-57 Sisal 1.33 38 Jute 1.46 10-30 7-21 B U L K Steel 7.80 208.0 27 1480 Aluminium alloys 69.0 26 600

15 Weight Considerations
Aramid fibers are the lightest g/cc Carbon 1.79 g/c Fiberglass is the heaviest 2.4 g/cc

16 Strength Considerations
Carbon is the strongest ksi Fiberglass ksi Aramids 400 ksi

17 Kevlar is the toughest Fiberglass Carbon
Impact Resistance Kevlar is the toughest Fiberglass Carbon

18 Stiffness Considerations
Carbon is the stiffest 30-40 msi Aramids 14 msi Fiberglass 10-13 msi

19 Cost Considerations Fiberglass is cost effective $5.00-8.00/lb.
Aramids $20.00/lb Carbon $30.00-$50.00/lb

20 Fibre architecture

21 Table 9 Mechanical Properties of Various Prepreg Materials [7]
Prepreg Material Fibre Volume Fraction (%) Tensile Modulus (GPa) Strength Unidirectional thermoset Carbon (AS4, T-300)/epoxy 55-65 Carbon (IM7)/epoxy 55-60 (Highest) S-2 glass/epoxy 55-63 Kevlar/epoxy 69 0.966 Carbon (AS4)/bismaleimide 55-62 Carbon (IM7)/bismaleimide 60-66 Carbon (IM7)/cyanate ester S-2 glass/cyanate ester 48.3 1.242 Unidirectional thermoplastic Carbon (IM7)/PEEK 57-63 179.4 (highest) 2.829 Carbon (G34/700)/Nylon 6 110.4 1.4904 Aramid/Nylon 12 52 46.92 1.4145 Carbon (AS4)/PPS 64 120.75 1.9665 Carbon (IM7)/polyimide 62 172.5 2.622 Fabric (plain weave) thermoset Carbon (AS4)/epoxy 55 34.5 0.552 Fabric (plain weave) thermoplastic tape Carbon HM (T650-35)/polyimide 58-62

22

23

24

25

26

27

28

29

30 Figure 30 Photos and Schematic Drawing of A Micro-Braided Yarn [8]

31


Download ppt "Review COMPOSITE SANDWICH PANEL UNDER BUCKLING BEHAVIOUR"

Similar presentations


Ads by Google