Download presentation
Presentation is loading. Please wait.
1
Knowledge exists to be imparted. (R.W. Emerson)
FLAW IN THE BAYESIAN PROCEDURE FOR ESTIMATION OF THE MAXIMUM REGIONAL EARTHQUAKE MAGNITUDE By Andrzej Kijko 2013 SSA Annual Meeting Salt Lake City, Utah 17-19 April 2013.
2
Contents Current Bayesian Procedure for mmax estimate (standard in nuclear industry !!!) What is wrong with the procedure and why? How to correct it? Illustration. Conclusion and Remarks. A Kijko
3
Estimation of Maximum Possible Magnitude
Two Approaches: Based exclusively on past observations (catalogue). 2. Based on past observations and independent information (Bayesian approach).
4
Approach 1: Based on Seismic Event
Catalogue Derivation: - Davies (1951) - Quenouille (1956) - Tate (1959) - Cooke (1979)
5
Approach 1: Based on Seismic Event Catalogue
where Δ is defined as (Cooke, 1979; Pisarenko et al., 1996)
6
Bayesian Procedure for mmax Estimation
Cornell (1994) … combination of observations with already existing knowledge! A Kijko
7
Bayesian Procedure for mmax Estimation
Prior mmax distribution for intraplate regions Courtesy Mark Petersen, USGS Cratons Margins A Kijko
8
Petersen’s prior and Gaussian Prior
Bayesian Procedure for mmax Estimation Petersen’s prior and Gaussian Prior Gaussian Prior: Coppersmith (1994); Ordaz (2007) A Kijko
9
Bayesian Procedure for mmax Estimation
Cornell (1994) … Posterior probability of mmax given the sample sample likelihood function prior probability of mmax = C A Kijko
10
Bayesian Procedure for mmax Estimation
Cornell (1994) … pposterior (mmax) = c X L(x|mmax) X pprior(mmax) A Kijko
11
Flaw in Current Procedure
For the sample likelihood function, the range of observations (magnitudes) depends on the unknown parameters. This dependence violates the fundamental rules for the application of the maximum likelihood estimation procedure. A Kijko
12
Flaw in Current Procedure
The currently used Bayesian procedure will by default underestimate / overestimate the value of mmax!!! The currently used Bayesian procedure will locate mmax somewhere between the maximum observed magnitude and the true maximum. A Kijko
13
Illustration 1 Prior distribution for Intraplate regions (Petersen et al, 2008) A Kijko
14
Illustration 2 Gaussian Prior by Cornell (1994) A Kijko
15
How to Correct Flaw in Current Procedure
Shift the Sample Likelihood Function from maximum observed magnitude to maximum expected magnitude. where A Kijko
16
Illustration of Shift Correction
Correction: Shift of Sample Likelihood Function A Kijko
17
Conclusion and Remarks
The current Bayesian procedure by default underestimates / overestimates mmax. Underestimation / overestimation of mmax can reach a value of unit of magnitude. A possible method to correct the flaw of the procedure is presented. A Kijko
18
Details of the Approach
A Kijko
19
References Cooke, P., Statistical Inference for bounds of random variables. Biometrika, 66, Cornell, C. A. (1968). Engineering seismic risk analysis, Bull. Seism. Soc. Am. 58, 1583–1606. Cornell CA. Statistical analysis of maximum magnitudes in the earthquakes of stable continental regions. In: J Schneider (ed). Seismic hazard methodology for the Central and Eastern United States. The earthquakes of stable continental regions. Vol. 1. Assessment of large earthquake potential. Palo Alto, CA, USA: EPRI;1994. NP-4726, pp 5-27. Davis, R.C.,1951. On minimum variance in nonregular estimation, Ann. Math. Stat., 22, Kijko, A., and M. A. Sellevoll (1989). Estimation of earthquake hazard parameters from incomplete data files, Part I, Utilization of extreme and complete catalogues with different threshold magnitudes, Bull. Seismol. Soc. Am. 79, 645–654. Kijko, A., and M. A. Sellevoll (1992). Estimation of earthquake hazard parameters from incomplete data files, Part II, Incorporation of magnitude heterogeneity, Bull. Seismol. Soc. Am. 82, 120–134.Weichert (1980). Kijko, A., Smit, A. (2012) Extension of the b-value Estimator for Incomplete Catalogs. Bull. Seism. Soc. Am, Vol 102, No 3, pp. 1283–1287. doi: / Molchan, GM., V. L. Keilis-Borok, and V. Vilkovich (1970). Seismicity and principal seismic effects, Geophys. J. 21, 323–335. Ordaz M, Aguilar A, Arboleda J ., Program for computing seismic hazard. CRISIS Ver Instituto de Ingenierı´a. UNAM, Mexico. Pisarenko, V.F., Lyubushin A., Lysenko, V.B., Golubeva, T.V., Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. BSSA, 86, 3, Quenouille , M.H., Notes on bias estimation. Biometrika. 43, Rosenblueth, E. (1986). Use of statistical data in assessing local seismicity, Earthq. Eng. Struct. Dynam. 14, 325–337. Rosenblueth, E., and M. Ordaz (1987). Use of seismic data from similar regions, Earthq. Eng. Struct. Dyn. 15, 619–634. Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. Seismol. Soc. Am. 70, 1337–1346. Tate, R.F., Unbiased estimation of location and scale parameters, Ann. Math. Statist. 30,
20
The End Thank You 20
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.