Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modelleerimine ja Juhtimine Tehisnärvivõrgudega

Similar presentations


Presentation on theme: "Modelleerimine ja Juhtimine Tehisnärvivõrgudega"— Presentation transcript:

1 Modelleerimine ja Juhtimine Tehisnärvivõrgudega
Identification and Control with artificial neural networks Eduard Petlenkov, Eduard Petlenkov, 2013

2 Artificial neuron Input vector: Vector of weight coeffitients:
Weighted sum Nonlinear element Input vector: Vector of weight coeffitients: Weighted sum: Eduard Petlenkov, 2013

3 Biological neuron and biological neural networks
Eduard Petlenkov, 2013

4 Sigmoid functions are having an "S" shape (sigmoid curve)
Activation functions (1) OUT=f(NET) Sigmoid functions are having an "S" shape (sigmoid curve) 1 Logistic function 2 Hyperbolic tangent Eduard Petlenkov, 2013

5 Types of artificial neural networks
Feedforward Feedback internal feedback external feedback Structure: inputs etalon Supervised learning Selflearning (unsupervised) Training/ learning: inputs Training criteria Eduard Petlenkov, 2013

6 Interpritation of results
How to use artificial neural networks Network Data preprocessing Interpritation of results Inputs Outputs Eduard Petlenkov, 2013

7 Feedforward neural networks and multilayer perceptron
Feedforward networks are networks in which an output of a neuron can be connected only with an input of a next layer neuron. - Input layer - Output layer - Hidden layer - Weighting coefficients, where is the number of the neuron’s input “from each to each” - neuron’s number in the layer - number of the layer Eduard Petlenkov, 2013

8 Mathematical function of a two-layer perceptron
- Activation function of the hiddent layer neurons; - Activation function of the output layer neurons. Eduard Petlenkov, 2013


Download ppt "Modelleerimine ja Juhtimine Tehisnärvivõrgudega"

Similar presentations


Ads by Google