Presentation is loading. Please wait.

Presentation is loading. Please wait.

Characteristics of Parallelograms

Similar presentations


Presentation on theme: "Characteristics of Parallelograms"โ€” Presentation transcript:

1 Characteristics of Parallelograms
Mr. Riddle

2 Quadrilaterals A quadrilateral is considered to be any polygon with 4 sides. Quadrilaterals Not Quadrilaterals A C E F B G H D

3 Quadrilaterals Quadrilaterals A polygon with four sides.
Quadrilaterals A polygon with four sides. Angles have a sum of 360ยฐ.

4 Example 1: Finding Angle Measures
Find the value of x. ๐‘ฅ =360 ๐‘ฅ+284=360 ๐’™=๐Ÿ•๐Ÿ”ยฐ 124ยฐ 72ยฐ ๐‘ฅยฐ 88ยฐ

5 You try! Find the value of x. ๐‘ฅ+47 +90+90+90=360 ๐‘ฅ+317=360 ๐‘ฅ=43ยฐ
(๐‘ฅ+47)ยฐ

6 Whatโ€™s a parallelogram?
Knowing that ABCD is a parallelogram, list off ALL of what you believe MIGHT be true about the parallelogram? Ex: Are all the sides the same length? Etcโ€ฆ

7 Parallelograms Parallelogram
Parallelogram Has all the characteristics of a Quadrilateral Both pairs of Opposite Sides are Parallel Both pairs of Opposite Sides are Congruent

8 Vocabulary Consecutive Angles โ€“ Angles of a polygon that share a side
โˆ 1 and โˆ 2 are consecutive angles in Parallelogram WXYZ. Can you name two other consecutive angles? 1 2 X W Z Y 3 4

9 Parallelograms Parallelogram
Consecutive angles in a parallelogram are same-side interior angles soโ€ฆ Parallelogram Has all the characteristics of a Quadrilateral Both pairs of Opposite Sides are Parallel Both pairs of Opposite Sides are Congruent Consecutive Angles are Supplementary โ€ฆsince both pairs of opposite sides are parallel.

10 Example 2: Using Consecutive Angles
Find ๐‘šโˆ ๐‘† in ๐‘ƒ๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™๐‘œ๐‘”๐‘Ÿ๐‘Ž๐‘š ๐‘…๐‘†๐‘‡๐‘Š. ๐‘šโˆ ๐‘†+๐‘šโˆ ๐‘…=180 ๐‘šโˆ ๐‘†+112=180 ๐‘šโˆ ๐‘†=68ยฐ ๐Ÿ๐Ÿ๐Ÿยฐ S R W T 68ยฐ

11 Parallelograms Parallelogram
Parallelogram Has all the characteristics of a Quadrilateral Both pairs of Opposite Sides are Parallel Both pairs of Opposite Sides are Congruent Consecutive Angles are Supplementary Opposite Angles are Congruent

12 Example 3: Using Algebra
Algebra: Find the value of x in PQRS. Then find QR and PS. 3๐‘ฅโˆ’15 R Q S P 2๐‘ฅ+3 3๐‘ฅโˆ’15=2๐‘ฅ+3 ๐‘ฅโˆ’15=3 ๐‘ฅ=18 ๐‘„๐‘…=3๐‘ฅโˆ’15= ๐Ÿ‘๐Ÿ— ๐‘ƒ๐‘† โ‰… ๐‘„๐‘… so, ๐‘ƒ๐‘†= ๐Ÿ‘๐Ÿ—

13 You Try! Find the value of y in Parallelogram EFGH. Then find ๐‘šโˆ ๐ธ, ๐‘šโˆ ๐บ, ๐‘šโˆ ๐น, ๐‘Ž๐‘›๐‘‘ ๐‘šโˆ ๐ป. ๐’š=๐Ÿ๐Ÿ ๐’Žโˆ ๐‘ฌ=๐Ÿ•๐ŸŽ, ๐’Žโˆ ๐‘ฎ=๐Ÿ•๐ŸŽ ๐’Žโˆ ๐‘ญ=๐Ÿ๐Ÿ๐ŸŽ, ๐’Žโˆ ๐‘ฏ=๐Ÿ๐Ÿ๐ŸŽ (๐Ÿ”๐’š+๐Ÿ’)ยฐ F E H G ๐Ÿ‘๐’š+๐Ÿ‘๐Ÿ• ยฐ

14 Parallelograms Parallelogram
Parallelogram Has all the characteristics of a Quadrilateral Both pairs of Opposite Sides are Parallel Both pairs of Opposite Sides are Congruent Consecutive Angles are Supplementary Opposite Angles are Congruent Diagonals bisect each other.

15 Example 4: Using Algebra
Find the values of a and b. ๐’‚=๐’ƒ+๐Ÿ ๐’‚๐’๐’… ๐’ƒ+๐Ÿ๐ŸŽ=๐Ÿ๐’‚โˆ’๐Ÿ– Soโ€ฆ ๐’ƒ+๐Ÿ๐ŸŽ=๐Ÿ ๐’ƒ+๐Ÿ โˆ’๐Ÿ– ๐’ƒ๐’š ๐’”๐’–๐’ƒ๐’”๐’•๐’Š๐’•๐’–๐’•๐’Š๐’๐’ ๐’ƒ+๐Ÿ๐ŸŽ=๐Ÿ๐’ƒ+๐Ÿ’โˆ’๐Ÿ– ๐’ƒ+๐Ÿ๐ŸŽ=๐Ÿ๐’ƒโˆ’๐Ÿ’ ๐Ÿ๐ŸŽ=๐’ƒโˆ’๐Ÿ’ ๐Ÿ๐Ÿ’=๐’ƒ ๐’‚= ๐Ÿ๐Ÿ’ +๐Ÿ ๐’‚=๐Ÿ๐Ÿ” ๐‘Ž Y X W Z ๐‘+10 ๐‘+2 2๐‘Žโˆ’8

16 You Try! Solve for x and y. ๐Ÿ‘๐’šโˆ’๐Ÿ•=๐Ÿ๐’™ ๐’‚๐’๐’… ๐’š=๐’™+๐Ÿ ๐Ÿ‘ ๐’™+๐Ÿ โˆ’๐Ÿ•=๐Ÿ๐’™ ๐Ÿ‘๐’™+๐Ÿ‘โˆ’๐Ÿ•=๐Ÿ๐’™
๐Ÿ‘๐’šโˆ’๐Ÿ•=๐Ÿ๐’™ ๐’‚๐’๐’… ๐’š=๐’™+๐Ÿ ๐Ÿ‘ ๐’™+๐Ÿ โˆ’๐Ÿ•=๐Ÿ๐’™ ๐Ÿ‘๐’™+๐Ÿ‘โˆ’๐Ÿ•=๐Ÿ๐’™ ๐Ÿ‘๐’™โˆ’๐Ÿ’=๐Ÿ๐’™ ๐’™โˆ’๐Ÿ’=๐ŸŽ ๐’™=๐Ÿ’ Soโ€ฆ ๐’š=๐Ÿ’+๐Ÿ ๐’š=๐Ÿ“ ๐‘ฅ+1 Y X W Z 3๐‘ฆโˆ’7 ๐‘ฆ 2๐‘ฅ

17 Proving that a Quadrilateral is a Parallelogram
Ifโ€ฆ Both pairs of opposite sides of a quadrilateral are congruent then the quadrilateral is a parallelogram Both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram One pair of opposite sides of a quadrilateral is both congruent and parallel then the quadrilateral is a parallelogram.

18 Example 5: Proving Parallelograms โ€“ Coordinate Plane
B(7,7) C (5,1) D(-6,1) Prove that ABCD is a parallelogram by showing that one pair of opposite sides is both congruent AND parallel.

19 Example 5: ๐‘†๐‘™๐‘œ๐‘๐‘’= ๐‘ฆ 2 โˆ’ ๐‘ฆ 1 ๐‘ฅ 2 โˆ’ ๐‘ฅ 1 ๐‘‘= ๐‘ฅ 2 โˆ’ ๐‘ฅ ๐‘ฆ 2 โˆ’ ๐‘ฆ 1 2 To show that AB is parallel to CD, we find their slopes to see if theyโ€™re the same. ๐‘†๐‘™๐‘œ๐‘๐‘’ ๐‘œ๐‘“ ๐ด๐ต= 7โˆ’7 7โˆ’ โˆ’4 = 0 11 =0 ๐‘†๐‘™๐‘œ๐‘๐‘’ ๐‘œ๐‘“ ๐ถ๐ท= 1โˆ’1 5โˆ’ โˆ’6 = 0 11 =0 To show ๐ด๐ต โ‰… ๐ถ๐ท , use distance formula. ๐ด๐ต= โˆ’4โˆ’ โˆ’7 2 = โˆ’ ๐ด๐ต= = 121 =๐Ÿ๐Ÿ ๐ถ๐ท= โˆ’6โˆ’ โˆ’1 2 = โˆ’ CONCLUSION: Since ๐ด๐ต โˆฅ ๐ถ๐ท and ๐ด๐ต โ‰… ๐ถ๐ท , ABCD must be a parallelogram by definition of a parallelogram.

20 Proving Parallelograms
Another way to prove that a quadrilateral is a parallelogram is to use the definition of a parallelogram. Parallelogram: a quadrilateral with both pair of opposite sides parallel. Soโ€ฆwe are going to do a proof where we prove that a quadrilateral has two pairs of opposite parallel sides which would then make the quadrilateral a parallelogram. Note: we will use congruent triangles to help us!

21 Example 6: Proving Parallelograms
โˆ 1โ‰…โˆ 3 ๐‘‹๐‘ โ‰… ๐‘‹๐‘ โˆ†๐‘Œ๐‘๐‘Š ๐‘†๐ด๐‘†โ‰…๐‘ƒ๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ 1 3 4 ๐ถ๐‘ƒ๐ถ๐‘‡๐ถ 5 ๐‘‹๐‘Œ โˆฅ ๐‘Š๐‘ ๐ผ๐‘“ ๐‘Ž๐‘™๐‘ก. ๐‘–๐‘›๐‘ก. โˆ  โ€ฒ ๐‘  โ‰…, ๐‘กโ„Ž๐‘’๐‘› ๐‘™๐‘–๐‘›๐‘’๐‘ โˆฅ. 6 ๐ท๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘Ž ๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™๐‘œ๐‘”๐‘Ÿ๐‘Ž๐‘š 2 7

22 Example 6: Explanation 1.) In order to prove itโ€™s a parallelogram, we must prove BOTH pairs of opposite sides are parallel. 2.) In order to prove that lines are parallel, we need to prove that alternate interior angles are congruent. 3.) In order to prove that alternate interior angles are congruent, we will prove that the triangles are congruent so their corresponding parts (alternate interior angles) are congruent. 4.) In order to prove that triangles are congruent, weโ€™ll use the SAS congruence theorem. So in orderโ€ฆ Prove Triangles congruent by SAS ๏ƒ Use CPCTC to show alternate interior angles are congruent ๏ƒ  Use congruent alternate interior angles to show lines are parallel ๏ƒ  Use BOTH sets of parallel sides to prove that WXYZ is a parallelogram. Need more help with proving a quadrilateral is a parallelogram? Go to my website and follow the link under Unit 3b: Proving Parallelograms


Download ppt "Characteristics of Parallelograms"

Similar presentations


Ads by Google