Presentation is loading. Please wait.

Presentation is loading. Please wait.

蛋白質體學 Proteomics 2011 Solid-Phase Peptide Synthesis (SPPS) and Applications of Synthetic Peptides 陳威戎 純化酵素是一件非常基本的工作,很多重要的研究,都脫不開酵素的純化工作。而大多數酵素的純化,基本上也脫不開一些最基本的原則。

Similar presentations


Presentation on theme: "蛋白質體學 Proteomics 2011 Solid-Phase Peptide Synthesis (SPPS) and Applications of Synthetic Peptides 陳威戎 純化酵素是一件非常基本的工作,很多重要的研究,都脫不開酵素的純化工作。而大多數酵素的純化,基本上也脫不開一些最基本的原則。"— Presentation transcript:

1 蛋白質體學 Proteomics 2011 Solid-Phase Peptide Synthesis (SPPS) and Applications of Synthetic Peptides 陳威戎 純化酵素是一件非常基本的工作,很多重要的研究,都脫不開酵素的純化工作。而大多數酵素的純化,基本上也脫不開一些最基本的原則。 首先,建立一個完善的酵素實驗室是很必要的;我們把許多實驗室內的運作細節一一交代,期望同學能認知這些經驗,確實接收並養成習慣,且期望應用到將來每個人的研究工作上。 最先遇到,但是最容易被忽視的步驟,就是材料處理及總蛋白質的抽取。將提醒你小心選擇採料的種類、時期、部位等,並選擇一個良好的粗抽取方式,以便有一個良好的開始。

2 Solid-Phase Peptide Synthesis (SPPS)
Chain assembly Cleavage from resin and removal of side-chain protecting groups Purification Additional chemical modification Characterization ~ first introduced by Bruce Merrifield in 1963

3 Strategies for SPPS Chain Assembly
Boc (t-butyloxycarbonyl) Fmoc (9-fluorenylmethoxycarbonyl)

4 Protecting Group Strategies in SPPS

5 Comparison of Boc and Fmoc SPPS
Requires special equipment Yes No Cost of reagents Lower Higher Solubility of peptides Purity of hydrophobic peptides High May be lower Problems with aggregation Less frequently More frequently Synthesis time ~20 min/amino acid ~20-60 min/amino acid Final deprotection HF TFA Safety Potentially dangerous Relatively safe

6 Solid Support - Resin Resin for SPPS: polystyrene bead with 1% divinyl-benzene, a cross-linking agent. Dry resin beads: microns, or mesh When in contact with solvents, the beads swell to approximately 10 times their dry volume. Macroscopically, the resin appears as an insoluble solid support. However, on the molecular level the resin is “in solution” or fully solvated. This solvation enhances coupling of the peptide resin with the protected amino acids.

7 Fmoc Resins HMP resin (4-hydroxymethyl-phenoxymethyl-copolystyrene-1% divinylbenzene resin), also known as Wang resin produces a carboxylic acid terminal peptide Amide resin – produces an amide terminal peptide MAPS resin (multiple antigenic peptides resin)

8 Protected Fmoc Amino Acid Derivatives
Asp(OtBu) ; Glu(OtBu) ; Asn(Trt) ; Gln(Trt) Arg(Pmc) ; His(Trt) ; Lys(Boc) Ser(tBu) ; Thr(tBu) ; Tyr(tBu) ; Cys(Trt)

9 General Protocols - Fmoc chemistry  Loading  Deprotection wash  Activation  Coupling wash Repeat ~  Cleavage from resin

10 General Protocols- Fmoc chemistry

11 Loading and Capping DCC (N,N’-dicyclohexylcarbodiimide)
DMAP (4-Dimethylaminopyridine) Acetic (benzoic) anhydride

12 Deprotection - Piperidine
Conductivity monitoring

13 Coupling Efficiency Vs. Peptide Length
0.995 0.99 0.98 0.97 0.96 5 0.95 0.92 0.89 0.85 10 0.91 0.83 0.76 0.69 15 0.93 0.87 0.75 0.65 0.56 20 0.68 0.46 25 0.79 0.62 0.48 0.38 30 0.86 0.41 0.31 35 0.84 0.71 0.50 0.36 0.25 40 0.82 0.67 0.45 0.30 0.20 45 0.80 0.63 0.26 0.17 50 0.78 0.60 0.37 0.22 0.14 55 0.58 0.34 0.19 0.11 60 0.74 0.55 0.09 65 0.73 0.53 0.27 0.07 70 0.12 0.06

14 Activation – HBTU/HOBt
HBTU: 2-(1H-benzotriazol-1-yl)-1,1,3,3- tetramethyluronium HOBt: 1-hydroxybenzotriazole HBTU activation ~ FastMoc chemistry !

15 Coupling Objectives: maximize solvation and minimize hydrogen bonding
DMF (dimethylformamide) ; NMP (N-methylpyrrolidone) DIEA (diisopropylethylamine)

16 Cleavage from Resin and Removal of Side-Chain Protecting groups

17 TFA Cleavage – 95% TFA + Scavengers

18 Scavengers

19 Purification Filtration and DCM wash Concentration by Rotavapor
Ether extraction Lyophilization Purification by HPLC

20 Additional Chemical Modification
Disulfide bond formation Phosphorylation Biotinylation Farnesylation Glycosylation C- and N-terminal modification Chromophore and fluorophore labelling

21 How to Choose Peptide Solvents
Peptides with a net positive charge: (1) H2O alone (2) gently shake / warm up to 30oC (3) 10% HOAc Peptides with a net negative charge: (1) H2O or HOAc (2) NH4HCO3 Peptides with a net zero charge: (1) H2O, HOAc, warming and shaking (2) 6M guanidine-HCl, TFA, HCOOH (3) MeOH, isopropanol, acetonitrile

22 Characterization Purity analysis by HPLC
Amino acid composition analysis by precolumn PITC derivatization on a PicoTag HPLC system Determination of peptide molecular weight by mass spectrometry

23 HPLC- Purity Analysis Column : JUPITER 5u C18, 250 x 4.60 mm , 300 Å (phenomenex) Eluent A : 0.1% TFA Eluent B : 0.08% TFA in 80% CH3CN Gradient : Time (min) Flow rate (ml/min) Eluent A (%) Eluent B Initial 1.00 100 30.00 40.00 40.01 0.00 (5) Sample preparation : appropriate amount in d.d. H2O (6) Loading : 1 mL

24 HPLC- Purity Analysis

25 Amino Acid Composition Analysis
Column : Pico Tag for amino acid composition analysis (Waters) Eluent A : 0.1 M NH4OAc, M NH4(SO4)2, 0.04% AcOH Eluent B : 0.1 M NH4OAc, 50% CH3CN Gradient : Time (min) Flow rate (ml/min) Eluent A (%) Eluent B Initial 1.00 100 10.00 95 5 35.00 45 55 42.00 0.00 42.01 (5) Sample preparation : appropriate amount in 2 mM NaOH (6) Loading : 20 mL

26 Amino Acid Composition Analysis-Standard

27 Amino Acid Composition Analysis-Sample

28 Amino Acid Composition Analysis
a.a. standard area pmol area/pmol sample area pmole 理論值 實驗值 Asx 146761 250 587.04 116669 199 3 2.9 Glx 131146 524.58 105742 202 Ser 141532 566.13 29319 52 1 0.7 Gly 156800 627.20 142010 226 3.3 His 145333 581.33 40358 69 1.0 Thr 145038 580.15 0.0 Ala 159585 638.34 Arg 152570 610.28 Pro 153833 615.33 Tyr 157653 630.61 82851 131 2 1.9 Val 160931 643.72 43161 67 Met 155710 582.84 82829 142 2.0 Ile 177989 Leu 183749 935.00 Phe 150162 560.65 Lys 229405 757.62 68605 91 1.3

29 ABI 433A Peptide Synthesizer

30 ABI 433A – Front View

31 ABI 433A – Rear View

32 ABI 433A – Flow Schematics

33 PS3 Peptide Synthesizer - PTI
PS3- a lot cheaper and easier to use! - Simple and fast cycle time under 40 mins/coupling - Variety of coupling techniques - Zero-dead-volume fluid valve system - Self diagnostic program - Higher productivity up to 45 couplings automatically 3 different peptides sequentially

34 Symphony Peptide Synthesizer - PTI
Symphony/Multiplex 12-channel solid-phase synthesizer - Fast multiplex operation operate 12-channel simultaneously - Patented multiplexing matrix valve - Lower coupling reagent cost - Variable scales: mmol - Automated cleavage - Easily customized protocols - Extreme versatility

35 Microwave Peptide Synthesizer - CEM
Odyssey System on a Discover platform World’s first microwave peptide synthesizer wins 2004 R&D 100 Award! -Significantly increased reaction rates cycle time less than 10 mins - Better product purity and yield - Overcoming chain aggregation - Automated cleavage within 15 mins - Lower cost: cheaper reagents - Useful on multiple programmable scale - Greater flexibility

36 PepSy Peptide Synthesizer - Zinsser
Parallel synthesis of peptide libraries in 96-well plate format. - 9 independent 96-well reactor stations - 864 peptides in 30 h, 10 mer, ~ 1 mg each - Dispensing pen for each a.a. - no washes or flushes needed - speeds up synthesis - no cross contamination - Bar code check for every step - Software-assisted library design

37 Applications of Synthetic Peptides
Antimicrobial Peptides (AMPs) ~ Host-Defense Peptides (HDPs) Peptide Vaccine Peptide Array Stimulus-Responsive Peptides

38 Antimicrobial Peptides (AMPs) ~ Host-Defense Peptides (HDPs)

39 Antimicrobial Peptides (AMPs) ~ Host-Defense Peptides (HDPs)

40

41

42

43

44

45

46

47

48

49 Peptide Vaccine

50 Peptide Vaccine

51 Peptide Vaccine

52

53

54

55

56

57 Peptide Array

58

59

60

61

62

63

64 Stimulus-Responsive Peptides

65 Applications of Stimulus-Responsive Peptides
Chockalingam, K. et al. Protein Engineering, Design and Selection : ; doi: /protein/gzm008

66

67

68 Stimulus-Responsive Peptides

69

70

71

72 Table 1 Summary of drug-delivery vehicles and stimulus-responsive drug carriers that have been developed to increase targeted accumulation of a drug, enhance its distribution, and control its intracellular or subcellular localization, with the ultimate goal of increasing the efficacy of anticancer therapeutics. Drug carrier Stimulus response Drug Application Abraxane® (albumin–drug conjugate) Paclitaxel Clinically approved for the treatment of breast cancer NK105 (drug-loaded PEG–poly(aspartic acid) micelle) In clinical trials for the treatment of colon and stomach cancers Doxil® (drug-loaded PEGylated liposome) Doxorubicin Clinically approved for the treatment of recurrent ovarian cancer ELP unimer Temperature-triggered aggregation Increased accumulation in hyperthermia treated tumors in mice Dextran–peptide–drug conjugate MMP cleavage of peptide linker for release of free drug Methotrexate Improved inhibition of tumor growth in subcutaneous murine models of human fibrosarcoma and glioblastoma Poly(histidine)-β-PEG, poly(l-lactic acid)-β-PEG mixed micelle pH-triggered disassembly for release of free drug Increased accumulation and improved efficacy in subcutaneous breast cancer tumors in mice Pluronic® micelle Ultrasound-induced disassembly for release of free drug Improved regression with ultrasound treatment in subcutaneous colon cancer tumors in mice in comparison to treatment with drug-loaded micelles alone Oligoarginine–peptide–oligoglutamate conjugate MMP-2 cleavage of peptide linker for CPP activation Increased accumulation compared with uncleavable controls in a variety of subcutaneously implanted tumor types in mice PEG–poly(l-histidine), poly(l-lactic acid)–PEG–poly(l-histidine)–TAT mixed micelle pH-triggered display of TAT for CPP activation Selective cellular uptake in slightly acidic conditions of pH 7.0 improved cytotoxicity in drug-resistant breast cancer cells RGD-functionalized ELP diblock Temperature-triggered micelle assembly for polyvalent ligand display Increased accumulation with hyperthermia-triggered micelle assembly in leukemia cells overexpressing αvβ3 integrin Thiolated heparin nanogel Destabilization of disulfide bonds in reducing intracellular environment for free drug release Heparin Increased cytotoxicity by induction of apoptosis in melanoma cells as compared with free drug ELP–drug conjugate micelle pH-triggered drug release in acidic endosomal compartment Enhanced accumulation, increased MTD and improved regression of colon carcinoma tumors in mice Poly(l-histidine)-based micelle pH-triggered protonation of histidine for endosomal disruption Improved cytotoxicity of intracellularly released drug in doxorubicin-resistant ovarian carcinoma cells Amidized poly(l-lysine)–drug conjugate pH-triggered charge reversal for nuclear targeting Camptothecin Nuclear localization of drug-enhanced cytotoxicity, compared with free drug, in adenocarcinoma cells TPP-modified liposome Ceramide Improved inhibition of tumor growth with mitochondrial targeting in a subcutaneous mouse model of mammary carcinoma tumors


Download ppt "蛋白質體學 Proteomics 2011 Solid-Phase Peptide Synthesis (SPPS) and Applications of Synthetic Peptides 陳威戎 純化酵素是一件非常基本的工作,很多重要的研究,都脫不開酵素的純化工作。而大多數酵素的純化,基本上也脫不開一些最基本的原則。"

Similar presentations


Ads by Google