Download presentation
Presentation is loading. Please wait.
Published byWesley Tate Modified over 6 years ago
1
Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch
Selection of appropriate chiral selectors for chiral analysis by regression modeling of spectral data Selorm Modzabi, Marianna A. Busch and Kenneth W. Busch Baylor University One Bear Place #97348 Waco, TX 76798
2
Need for chiral analysis*
Pharmaceutical industry Drug development Process control Agro-chemical industry Food and beverage industry Fragrance industry Basic research *Chiral Analysis, K. W.Busch & M. A. Busch Eds., Elsevier, 2006
3
CHIRAL ANALYSIS BY REGRESSION MODELING OF SPECTRAL DATA
(CARMSD) Modern chemical instrumentation allows us to combine— Multivariate (multi-wavelength) data collection with Multivariate modeling to give a powerful combination that can extract latent information from the multivariate data that would not be possible with univariate measurements
4
Basic Strategy of CARMSD 1. Calibration Phase
Prepare a set of calibration samples Same total concentration of chiral analyte Different known enantiomeric compositions Fixed concentration of chiral auxiliary
5
Basic Strategy of CARMSD 1. Calibration Phase
Collect spectral data on the calibration set Perform PLS-1 regression modeling
6
Basic Strategy of CARMSD 2. Validation Phase
Prepare a new set of validation samples Collect spectral data Enter the spectral data into the regression model and predict the enantiomeric compositions Compare the predicted enantiomeric compositions with the known values
7
CARMSD Clearly the chiral auxiliary is at the heart of the CARMSD method. Regression modeling depends on changes in the spectral signature with enantiomeric composition of the sample. The larger these spectral changes are, the easier it is to develop robust regression models.
8
CARMSD Chiral Selectors used to date Cyclodextrins
Modified cyclodextrins Surfactants & mixed cyclodextrins Chiral Surfactants Chiral Ionic Liquids
9
Enantiomer-CD transient inclusion complexes
Enantiomeric discrimination by transient noncovalent complex formation with cyclodextrins— An Example Enantiomeric pair CD CD Diastereomeric pair (hypothetical) Enantiomer-CD transient inclusion complexes 9
10
Chiral selectors used to date
Chiral analytes: amino acids, pharmaceuticals, other organics Chiral selector Analyte concentration Prediction error (RMSEP) range Cyclodextrins (CDs) 3.75 – 7.50 mM 0.02 – 0.07 Modified cyclodextrins (MCDs) 7.5 mM 0.05 – 0.6 Chiral surfactants (CSs) 1.5 – 6 % w/v 1.0 x x 10-6 M 0.02 – 0.05 Chiral ionic liquids (CILs) 30 and 150 mM 5 mM 0.05 – 0.09 Analyte to selector (CDs, MCDs) mole ratio: = 1 : 2 RMSEP = [S (xip – xi)2/n]1/2 : xi = known mole fraction, xpi = predicted mole fraction & n = total samples predicted
11
Problems with CDs Limited Solubility
Extent of interaction depends on formation constant of inclusion complex Possibility of more than one complex in solution (R—CD, CD—R—CD, etc.) Inclusion complex formation depends on size of analyte in relation to cyclodextrin
12
What about other possible chiral auxiliaries?
13
Use of Chiral Amines Ion-pair formation as a means of enantiomeric discrimination Formation of quaternary ammonium salts of carboxylic acids
14
CARMSD with a Homochiral Amine
Chiral selector: (S)-1-phenylethylamine (S-PEA) Determination of enantiomeric composition of Tyrosine with (S)-phenylethylamine using UV spectroscopy Zwitterion Diastereomeric ion pairs 14
15
Use of (S)-1-phenylethylamine
Determination of enantiomeric composition of Tyrosine (Tyr to S-PEA ratio = 1 : 1) Original spectra Isosbestic point (343 nm) 15
16
Effect of pH on spectrum
Effect of varying PEA/Tyr mol ratios at neutral pH Effect of varying PEA/Tyr mol ratios in acid solution
17
Job’s Plot Job’s plot in neutral solution indicating 1:1 ion pair formation Job’s plot in acid solution indicating lack of ion pair formation
18
Determination of enantiomeric composition of Tyrosine with (S)-phenylethylamine using UV spectroscopy— PLS1 Calibration Model Plots Randomly Selected Calibration Samples: , , 0.300, 0.400, 0.500, 0.650, 0.850, 0.950
19
Determination of enantiomeric composition of Tyrosine with (S)-phenylethylamine using UV spectroscopy— Results of CARMSD Cross validation of calibration samples: , , 0.300, 0.400, 0.500, 0.650, 0.850, 0.950 Actual D-Tyr mole fraction Predicted D-Tyr mole fraction Predicted L-Tyr mole fraction 0.100 0.101 0.899 (0.900) 0.250 0.750 (0.750) 0.300 0.303 0.697 (0.700) 0.400 0.401 0.599 (0.600) 0.450 0.462 0.538 (0.550) 0.650 0.659 0.341 (0.350) 0.750 0.758 0.242 (0.250) 0.800 0.802 0.198 (0.200) 0.900 0.901 0.099 (0.100) RMSEP: D-Tyr & L-Tyr = 0.006 Values in bracket = Actual mole fraction of L-Tyr Cross validation plot 19
20
Determination of enantiomeric composition of Phenylalanine with (S)-phenylethylamine using UV spectroscopy- Results of CARMSD Cross validation of calibration samples: , 0.100, 0.200, 0.392, 0.500, 0.527, 0.700, 0.950 Actual D-Phe mole fraction Predicted D-Phe mole fraction Predicted L-Phe mole fraction 0.150 0.185 0.823 (0.850) 0.267 0.264 0.738 (0.733) 0.352 0.348 0.649 (0.648) 0.468 0.464 0.529 (0.532) 0.486 0.483 0.515 (0.514) 0.527 0.524 0.465 (0.473) 0.600 0.597 0.397 (0.400) 0.650 0.640 0.346 (0.350) 0.819 0.814 0.161 (0.181) RMSEP: D-Phe = & L-Phe = 0.011 Values in bracket = Actual mole fraction of L-Phe 20
21
Determination of enantiomeric composition of Alanine with(S)-phenylethylamine using UV spectroscopy- Results of CARMSD Cross validation of calibration samples: , 0.100, 0.250, 0.350, 0.500, 0.650, 0.750, 0.850 Actual L-Ala mole fraction Predicted L-Ala mole fraction Predicted D-Ala mole fraction 0.200 0.211 0.789 (0.800) 0.300 0.279 0.721 (0.700) 0.400 0.404 0.596 (0.600) 0.600 0.631 0.369 (0.400) 0.700 0.692 0.308 (0.300) RMSEP: D-Ala & L-Ala = 0.018 Values in bracket = Actual mole fraction of D-Ala 21
22
Use of Chiral Alcohols Fischer Esterification
Esterification results in the formation of true covalent diastereomers
23
CARMSD with Homochiral (S)-(+)-1,2-propanediol
Determination of enantiomeric composition of Phenylalanine with (S)-1,2-propanediol using UV spectroscopy Possible products 23
24
Determination of enantiomeric composition of Phenylalanine with 1,2-propanediol using UV spectroscopy Original UV spectra (15 samples) Mean centered UV spectra (15 samples) 24
25
Determination of enantiomeric composition of Phenylalanine with 1,2-propanediol using UV spectroscopy- PLS1 Calibration Model Plots Randomly selected calibration samples: 0.050, 0.150, 0.250, 0.300, 0.500, 0.750, and 0.950
26
Determination of enantiomeric composition of Phenylalanine with 1,2-propanediol using UV spectroscopy- Results of CARMSD Randomly selected calibration samples: 0.050, 0.150, 0.250, 0.300, 0.500, 0.750, and 0.950 Actual D-Phe mole fraction Predicted D-Phe mole fraction Predicted L-Phe mole fraction 0.103 0.0848 0.915 (0.897) 0.400 0.407 0.593 (0.600) 0.451 0.425 0.575 (0.549) 0.597 0.596 0.404 (0.403) missing 0.773 0.227 (missing) 0.801 0.208 (0.199) 0.851 0.859 0.141 (0.149) 0.877 0.123 (missing) RMSEP: D-Phe & L-Phe = 0.014 Values in bracket = Actual mole fraction of L-Phe 26
27
CARMSD with noncovalent diastereomers vs
CARMSD with noncovalent diastereomers vs. CARMSD with covalent diastereomers RMSEP figure of merit analysis of chiral discrimination strategies 0.1 0.2 0.3 0.4 0.5 0.6 Cyclodextrins Modified Chiral Surfactants Chiral Ionic Liquids Covalent/ionic Diatereomers LEL UEL UEL - LEL LEL = lower RMSEP limit and UEL = upper RMSEP limit
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.