Presentation is loading. Please wait.

Presentation is loading. Please wait.

GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008

Similar presentations


Presentation on theme: "GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008"— Presentation transcript:

1 GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008
Microscopic Origin of CPP-GMR… SPIN ACCUMULATION & SPIN DIFFUSION Henri JAFFRES Unité Mixte de Physique CNRS/Thales et Université Paris Sud 11 a terrific example of how fundamental research can lead to cutting-edge technology, which in turn feeds back into fundamental research -- in this case, possibly enabling future breakthroughs in nanotechnology and quantum computing. GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008

2 Spin-polarized transport in 3d Ferromagnet
*) two current model by Mott M Ex: Co Transport du courant en parallèle pa un canal d’ ⓔ de spin  et un canal de spin  Résistivité dans chaque canal proportionnelle au nombre de transition sd EF s d *) Equivalent resistor scheme *) Bulk spin asymetry coefficient

3 CPP-GMR & SPIN ACCUMULATION
NANOWIRES : Co Co H(kG) (NiFe50Å)/Cu40Å) (Co100Å/Cu50Å) Piraux et al.; Appl. Phys. Lett. 65, 2484 (1994) Blondel et al.; Appl. Phys. Lett. 65, 3019 (1994) First measurements of CPP-GMR in 2-D multilayers, see Schroeder, Bass, Pratt (MSU) For a review see Barthélémy et al., Handbook of Magn. Mat., vol.12, edt by K.J.Buschow , Elsevier(1999)

4 CPP-GMR & SERIES RESISTANCE MODEL
P configuration AP configuration M NM M M NM M CONDITIONS : thickness << Spin Diff. Length lsf & Spin relaxation negligible in Cu r R R  = (r+R)/2 R  = (R+r)/2 R  = r r r SPIN ACC. R R Current spin polarization R  = R GMR as a probe of the current spin polarization T. Valet - A. Fert, PRB (1993)

5 IN MAGNETIC MULTILAYER
SPIN ACCUMULATION IN MAGNETIC MULTILAYER s s d d

6 Ferromagnet ( ex: Fe, Co ) current Spin Polarization
Interface FM/NM : mécanisme d’injection de spins Spin Polarization ex: Co = 0.46 Mott, Proc. Roy. Soc. 156, 368 (1936) Campbell-Fert, Ferrom. mater, vol.3, 717 (1982) Ferromagnet ( ex: Fe, Co ) Non magnetic ( ex: Cu, GaAs ) zone of spin accumulation Splitting of  and  Fermi levels current Spin Polarization diffusive spin current Van Son, PRL 58 (1987)

7 Good conductivity matching for metals
Injection métal magnétique  métal non magnétique FM NM T. Valet, A. Fert, PRB 1993 number of spin flips in F accum. spins in FM accum. spins in NM number of spin flips in NM Good conductivity matching for metals

8 Profile n(x) of carrier density
DIFFUSIVE CURRENT Profile n(x) of carrier density Jl n(x) current J ? Jr : mean free path z Diffusion constant

9 (related to band filling)
DIFFUSION CURRENT carrier density Fermi level density of states EF EF,0=equilibrium chemical potential (related to band filling) EF=c

10 DRIFT CURRENT Ohm’s law
Drift current JE in the presence of an electric field E *) average velocity acquired by a particle between 2 successive diffusions Momentum relaxation time : Displacement of the Fermi surface drift velocity Electrical potential Ohm’s law

11 ELECTROCHEMICAL POTENTIAL
relaxation term phenomenological

12 DIFFUSION Vs. BROWNIAN MOTION ( E=0 )
Diffusion equation S *) EXPLORATION RADIUS  mean free path *) NUMBER OF SURFACE ‘S’ CROSSINGS

13 SPIN ACCUMULATION & SPIN CURRENT
p ,  (mean free path) sf, lsf (spin diffusion length) t=0 lsf

14 CHEMICAL vs. ELECTRICAL POTENTIALS
d d eV zone of spin accumulation Co Cu

15 LINK BETWEEN SPIN CURRENT
& SPIN ACCUMULATION

16 SPIN ACCUMULATION & SPIN CURRENT
diffusive spin current FM NM Interface z=0 Current polarization continuity of spin current Co Cu = spin-polarized current at the interface

17 SIMPLE SCHEME FOR MAGNETORESISTANCE
FM Interface z=0 NM potential drop at the interface

18 Positive MR CONTACT RESISTANCE Vs. SPIN ACCUMULATION SPIN ASSYMETRY
Paramagnetic electrodes SPIN ASSYMETRY FERROM. RESISTIVITY  FERROM. SPIN DIFF. LENGTH  CHARACTERISTIC RESISTANCE

19 EFFETS DE BULK + INTERFACE
FM NM

20 CPP-GMR & SPIN ACCUMULATION
NANOWIRES : Co Co H(kG) (NiFe50Å)/Cu40Å) (Co100Å/Cu50Å) Piraux et al.; Appl. Phys. Lett. 65, 2484 (1994) Blondel et al.; Appl. Phys. Lett. 65, 3019 (1994) First measurements of CPP-GMR in 2-D multilayers, see Schroeder, Bass, Pratt (MSU) For a review see Barthélémy et al., Handbook of Magn. Mat., vol.12, edt by K.J.Buschow , Elsevier(1999)

21 CPP-GMR & SERIES RESISTANCE MODEL
P configuration AP configuration M NM M M NM M CONDITIONS : thickness << Spin Diff. Length lsf & Spin relaxation negligible in Cu r R R  = (r+R)/2 R  = (R+r)/2 R  = r r r SPIN ACC. R R Current spin polarization R  = R GMR as a probe of the current spin polarization T.Valet - A. Fert, PRB (1993)

22 SPIN-SWITCH : DETECTION ELECTRIQUE D’UNE ACCUMULATION DE SPINS
Principle : Johnson and Silsbee, PRL 55, 1790 (1985) ; PRB 37, 5312 (1988) Experiments : Jedema et al., Nature 410, 345 (2001) A. Fert & al., J. Phys. D : Appl. Phys 35, 2443 (2002) ; J.-M. George PRB (2003) spin injection into Cu (N) through a first magnetic electrode magnetic third contact  100 nm

23 Good conductivity matching for metals
FM NM T. Valet, A. Fert, PRB 1993 accum. spins in FM accum. spins in NM number of spin flips in F number of spin flips in NM Good conductivity matching for metals

24 discontinuity of EF,  and EF,  at interface = (1 ) rb j,
Rashba PRB 62,R16267 (2000); Fert-Jaffres PRB 64, (2001) discontinuity of EF,  and EF,  at interface = (1 ) rb j, large interface resistance  large discontinuity of EF  number of spin flip in F number of spin flip in SC  Increase of the spin diffusive current in the semiconductor

25 CASE OF MULTILAYERS accumulation vector at left accumulation vector
Co  Cu Co  Cu accumulation vector at left accumulation vector at right propagation matrix transfer matrix interface matrix

26

27 Ferromagnet ( ex: Fe, Co ) current Spin Polarization
Interface FM/NM : mécanisme d’injection de spins Spin Polarization ex: Co = 0.46 Mott, Proc. Roy. Soc. 156, 368 (1936) Campbell-Fert, Ferrom. mater, vol.3, 717 (1982) Ferromagnet ( ex: Fe, Co ) Non magnetic ( ex: Cu, GaAs ) zone of spin accumulation Splitting of  and  Fermi levels current Spin Polarization diffusive spin current Van Son, PRL 58 (1987)

28 FM NM T. Valet, A. Fert, PRB 1993

29 discontinuity of EF,  and EF,  at interface = (1 ) rb j,
Rashba PRB 62,R16267 (2000); Fert-Jaffres PRB 64, (2001) discontinuity of EF,  and EF,  at interface = (1 ) rb j, large interface resistance  large discontinuity of EF  number of spin flip in F number of spin flip in SC  Increase of the spin diffusive current in the semiconductor

30 Magnetic tunnel junction : Spin-dependent Interface resistance
FM I SC Tunnel junction = Spin-Dependent interface resistance  P : polarisation

31 SPIN INJECTION : MICROSCOPIC MODEL OF DIFFUSION
current polarization ? NO YES FM SC ? FM SC FM SC FM d Sink Sink Probe ? ? resistive interface ( T ) Current polarization : Current polarization :

32 Spin Accumulation Vs. Spin Current
FM I SC

33 EFFETS DE BULK + INTERFACE
FM NM

34 EFFETS DE BULK + INTERFACE
FM NM

35 + - CoFe MgO AlGaAs(n) GaAs AlGaAs(p) Spin LED
Coll., LPCNO TOULOUSE (X. Marie)

36 Electrical spin injection & optical detection
Polarisation-resolved Electroluminescence experiments 1 3 s+ s - H s- s+ s- s+ Measure of the circular polarization(Pc) Determine the current spin-polarization injected in the Quantum well I+ - I- I+ + I- Pc (EL) = « Injection and detection of a spin-polarized current in a light-emitting diode », R. Fiederling et al., Nature 402, 787 (1999)

37 Zhu et al., Phys. Rev. Lett. 87, 016601 (2001)
INJECTION INTO (Al)GaAs THROUGH A SCHOTTKY BARRIER : DETECTION BY ELECTROLUMINESCENCE MEASUREMENTS TG=10°C Hanbicki et al., Appl. Phys. Lett. 80, 1240 (2002) Zhu et al., Phys. Rev. Lett. 87, (2001) Ploog, J. Appl. Phys., 91 (10), 7256 (2002) TG=50°C

38 INJECTION INTO GaAs THROUGH AN OXIDE BARRIER (Al2O3)
V.F. Mostnyi, V.I. Safarov, Appl. Phys. Lett. 81(2), 265 (2002) 1 SZ  2.5%  Pelec. >10 % P. Van Dorpe et al, Jpn. J. Appl. Phys. Part 2, vol.42, L502 (2003) SZ  8%  Pelec. >24 % sputtering MBE 100 nm Oblique Hanle Effect (OHE)

39 INJECTION INTO GaAs THROUGH AN OXIDE BARRIER (Al2O3)
V.F. Mostnyi, V.I. Safarov, Appl. Phys. Lett. 81(2), 265 (2002) 1 SZ  2.5%  Pelec. >10 % P. Van Dorpe et al, Jpn. J. Appl. Phys. Part 2, vol.42, L502 (2003) SZ  8%  Pelec. >24 % sputtering MBE 100 nm Oblique Hanle Effect (OHE)

40 OPTICAL DETECTION OF SPIN ACCUMULATION IN GaAs

41 Injection électrique et détection optique de spin
a) Croissance T° ambiante b) Croissance 300° C Circular polarization Vs. perpendicular magnetic field Y. Lu et al., Appl. Phys. Lett. 93, (2008)

42 Measurement of t(T) et ts (T) et F(T) by Time-Resoloved PL experiments
 Lifetime and S spin relaxation time PC = F*Ps Ps is the spin-polarization of electrons injected in the QW F(T) = 1 1+(T)/ S(T))

43 Mg0 thickness dependence on spin-injection yield
Sample Thickness (nm) A 1.4 B2 2.6 C 4.3 The EL Spin-polarization increases With MgO thickness B2 A C

44 MR vs. characteristic times…
‘Courant de spin de rétrodiffusion’ injection détection

45

46 HANLE EFFECT = DEPOLARIZATION BY SPIN PRECESSION AROUND A TRANSVERSE MAGNETIC FIELD

47

48

49

50 Hanle effect

51 A SINGLE CONTACT EXPERIMENT……
n  51018 cm-3 n  21019 cm-3 w L 2 1 W M I GaAs Co Al2O3 H Coll. LPN Marcoussis (A. Lemaitre)

52 VARIATION OF THE CONTACT RESISTANCE ……
( NO WEAK LOCALIZATION EFFECT ! )

53 Electrical measurements…
B C a b

54 Electrical measurements…
B C a b Kerr effect…

55

56 Resume : MR Vs. INTERFACIAL RESISTANCE (CPP GEOMETRY)
A. Fert, H. Jaffrès. Phys. Rev. B, 64, (2001) FM SC d NO SPIN INJECTION + NO SPIN DETECTION INJECTION & DETECTION


Download ppt "GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008"

Similar presentations


Ads by Google