Presentation is loading. Please wait.

Presentation is loading. Please wait.

Locality in Coding Theory

Similar presentations


Presentation on theme: "Locality in Coding Theory"β€” Presentation transcript:

1 Locality in Coding Theory
Madhu Sudan Harvard April 9, 2016 Skoltech: Locality in Coding Theory

2 Error-Correcting Codes
(Linear) Code πΆβŠ† 𝔽 π‘ž 𝑛 . 𝔽 π‘ž : Finite field with π‘ž elements. 𝑛 ≝ block length π‘˜=dim(𝐢)≝ message length 𝑅(𝐢)≝ π‘˜/𝑛: Rate of 𝐢 𝛿 𝐢 ≝ min π‘₯β‰ π‘¦βˆˆπΆ {𝛿 𝑒,𝑣 ≝ Pr 𝑖 [ 𝑒 𝑖 β‰  𝑣 𝑖 ]}. Basic Algorithmic Tasks Encoding: map message in 𝔽 π‘ž π‘˜ to codeword. Testing: Decide if π‘’βˆˆπΆ Correcting: If π‘’βˆ‰πΆ, find nearest π‘£βˆˆπΆ to 𝑒. April 9, 2016 Skoltech: Locality in Coding Theory

3 Locality in Algorithms
β€œSublinear” time algorithms: Algorithms that run in time o(input), o(output). Assume random access to input Provide random access to output Typically probabilistic; allowed to compute output on approximation to input. (Property testing β‰œ Sublinear time for Boolean functions) LTCs: Codes that have sublinear time testers. Decide if π‘’βˆˆπΆ probabilistically. Allowed to accept 𝑒 if 𝛿(𝑒,𝐢) small. LCCs: Codes that have sublinear time correctors. If 𝛿(𝑒,𝐢) is small, compute 𝑣 𝑖 , for π‘£βˆˆπΆ closest to 𝑒. April 9, 2016 Skoltech: Locality in Coding Theory

4 LTCs and LCCs: Formally
𝐢 is a (β„“, πœ–)-LTC if there exists a tester that Makes β„“(𝑛) queries to 𝑒. Accept π‘’βˆˆπΆ w.p. 1 Reject 𝑒 w.p. at least πœ–β‹…π›Ώ(𝑒,𝐢). C is a (β„“,πœ–)-LCC if exists decoder 𝐷 s.t. Given oracle access 𝑒 close to π‘£βˆˆπΆ, and 𝑖 Decoder makes β„“(𝑛) queries to 𝑒. Decoder 𝐷 𝑒 (𝑖) usually outputs 𝑣 𝑖 . βˆ€π‘–, Pr 𝐷 [ 𝐷 𝑒 𝑖 β‰  𝑣 𝑖 ]≀𝛿(𝑒,𝑣)/πœ– Often: ignore πœ– (fix to 1 3 ) and focus on β„“ LDC if only coordinates of message can be recovered. April 9, 2016 Skoltech: Locality in Coding Theory

5 Skoltech: Locality in Coding Theory
Outline of this talk Part 0: Definitions of LTC, LCC Part 1: Elementary construction Part 2: Motivation (historical, current) Part 3: State-of-the-art constructions of LCCs Part 4: State-of-the-art constructions of LTCs April 9, 2016 Skoltech: Locality in Coding Theory

6 Part 1: Elementary Construction
April 9, 2016 Skoltech: Locality in Coding Theory

7 Main Example: Reed-Muller Codes
Message = multivariate polynomial; Encoding = evaluations everywhere. RM π‘š,π‘Ÿ,π‘ž ≝ { 𝑓 𝛼 π›Όβˆˆ 𝔽 π‘ž π‘š | π‘“βˆˆ 𝔽 q π‘₯ 1 ,…, π‘₯ π‘š , deg 𝑓 β‰€π‘Ÿ} Locality? Restrictions of low-degree polynomials to lines yield low-degree (univ.) polys. Random lines sample 𝔽 π‘ž π‘š uniformly (pairwise ind’ly) Say π‘Ÿ<π‘ž April 9, 2016 Skoltech: Locality in Coding Theory

8 LCCs and LTCs from Polynomials
Decoding (π‘Ÿ<π‘ž): Problem: Given π‘“β‰ˆπ‘, π›Όβˆˆ 𝔽 π‘ž π‘š , compute 𝑝 𝛼 . Pick random 𝛽 and consider 𝑓 ​ 𝐿 where 𝐿= {𝛼+𝑑 𝛽 | π‘‘βˆˆ 𝔽 π‘ž } is a random line βˆ‹π›Ό. Find univ. poly β„Žβ‰ˆπ‘“ ​ 𝐿 and output β„Ž(𝛼) Testing (π‘Ÿ<π‘ž/2): Verify deg 𝑓 ​ 𝐿 β‰€π‘Ÿ for random line 𝐿 Parameters: 𝑛= π‘ž π‘š ;β„“=π‘ž= 𝑛 1 π‘š ; 𝑅 𝐢 β‰ˆ 1 π‘š! Analysis non-trivial Ideas can be extended to π‘Ÿ>π‘ž. Locality β‰ˆpoly( 𝛿 βˆ’1 ) April 9, 2016 Skoltech: Locality in Coding Theory

9 Skoltech: Locality in Coding Theory
Part 2: Motivations April 9, 2016 Skoltech: Locality in Coding Theory

10 Motivation – 1 (β€œPractical”)
How to encode massive data? Solution I Encode all data in one big chunk Pro: Pr[failure] = exp(-|big chunk|) Con: Recovery time ~ |big chunk| Solution II Break data into small pieces; encode separately. Pro: Recovery time ~ |small| Con: Pr[failure] = #pieces X Pr[failure of a piece] Locality (if possible): Best of both Solutions!! April 9, 2016 Skoltech: Locality in Coding Theory

11 Aside: LCCs vs. other Localities
Local Reconstruction Codes (LRC): Recover from few (one? two?) erasures locally. AND Recover from many errors globally. Regenerating Codes (RgC): Restricted access pattern for recovery: Partition coordinates and access few symbols per partition. Main Differences: #errors: LCCs high vs LRC/RgC low Asymptotic (LCC) vs. Concrete parameters (LRC/RgC) April 9, 2016 Skoltech: Locality in Coding Theory

12 Motivation – 2 (β€œTheoretical”)
(Many?) mathematical consequences: Probabilistically checkable proofs: Use specific LCCs and LTCs Hardness amplification: Constructing functions that are very hard on average from functions that are hard on worst-case. Any (sufficiently good) LCC β‡’ Hardness amplification Small set expanders (SSE): Usually have mostly small eigenvalues. LTCs β‡’ SSEs with many big eigenvalues [Barak et al., Gopalan et al.] April 9, 2016 Skoltech: Locality in Coding Theory

13 Skoltech: Locality in Coding Theory
Aside: PCPs (1 of 4) Familiar task: Protect massive data π‘šβˆˆ 0,1 π‘˜ PCP task: Protect π‘š + analysis πœ™ π‘š ∈{0,1}. πœ™(π‘š) is just one bit long – would like to read & trust πœ™(π‘š) with few probes. Can we do it? Yes! PCPs! β€œFunctional Error-correction” π‘š 𝐸(π‘š) 𝐸 πœ™ (π‘š) πœ™ π‘š April 9, 2016 Skoltech: Locality in Coding Theory

14 Skoltech: Locality in Coding Theory
PCPs (2 of 4) - Definition W 1 V PCP Verifer: Given π‘Šβˆˆ 0,1 𝑁 HTHHTH Tosses random coins Determines query locations Reads locations. Accepts/Rejects π‘Šβ‰ˆ 𝐸 πœ™ π‘š with πœ™ π‘š =1β‡’ V accepts w.h.p. π‘Š far from every 𝐸 πœ™ π‘š with πœ™ π‘š =1β‡’ rejects w.h.p. Distinguishes πœ™ βˆ’1 1 β‰ βˆ… from πœ™ βˆ’1 1 =βˆ… April 9, 2016 Skoltech: Locality in Coding Theory

15 PCPs (3 of 4): β€œPolynomial-speak”
π‘šβ†’π‘€(π‘₯) low-degree (multiv.) polynomial πœ™β†’Ξ¦ : local map from poly’s to poly’s πœ™ π‘š =1β‡”βˆƒ 𝐴,𝐡,𝐢 s.t. Ξ¦ 𝑀,𝐴,𝐡,𝐢 ≑0 𝐸 πœ™ π‘š =( 𝑀 , 𝐴 , 𝐡 , 𝐢 ) (evaluations) Local testability of RM codes β‡’ can verify 𝐸 πœ™ (π‘š) syntactically correct. ( βŒ©π‘€βŒͺ, 〈𝐴βŒͺ, 〈𝐡βŒͺ, 𝐢 β‰ˆ polynomials ) Distance of RM codes + Ξ¦ 𝑀,𝐴,𝐡,𝐢 π‘Ž =0 for random π‘Ž β‡’ Semantically correct (πœ™ π‘š =1)). April 9, 2016 Skoltech: Locality in Coding Theory

16 Skoltech: Locality in Coding Theory
PCP (4 of 4) π‘šβ‰‘πΈ:𝑉×𝑉→ 0,1 (edges of graph). ≑ 𝐸 : 𝔽 π‘ž 2 β†’ 𝔽 π‘ž with deg 𝐸 ≀𝑛≝|𝑉| πœ™ 𝐸 =1⇔ graph 3-colorable. βˆƒ πœ’:𝑉→{βˆ’1,0,1} s.t. βˆ€π‘¦,π‘§βˆˆπ‘‰, 𝐸 𝑦,𝑧 =1β‡’πœ’ 𝑦 β‰ πœ’ 𝑧 Ξ¦ πœ’ ,𝐴, 𝐴 1 , 𝐡, 𝐡 1 , 𝐡 2 , 𝑑 = 𝐴(𝑦) βˆ’ πœ’ 𝑦 +1 β‹… πœ’ (𝑦)β‹… πœ’ (𝑦)+1 + 𝑑 𝐴 𝑦 βˆ’ 𝐴 1 𝑦 β‹… π‘ŽβˆˆV (π‘¦βˆ’π‘Ž) + 𝑑 2 𝐡 𝑦,𝑧 βˆ’πΈ 𝑦,𝑧 β‹… π‘—βˆˆ{βˆ’2,βˆ’1,1,2} πœ’ 𝑦 βˆ’ πœ’ 𝑧 βˆ’π‘— + 𝑑 3 𝐡 𝑦,𝑧 βˆ’ 𝐡 1 𝑦,𝑧 π‘Žβˆˆπ‘‰ π‘¦βˆ’π‘Ž βˆ’ 𝐡 2 𝑦,𝑧 π‘βˆˆπ‘‰ (π‘§βˆ’π‘) April 9, 2016 Skoltech: Locality in Coding Theory

17 Part 3: Recent Progress on LCCs + LTCs
April 9, 2016 Skoltech: Locality in Coding Theory

18 Summary of Recent Progress
Till 2010: locality 𝑛 =π‘œ 𝑛 β‡’π‘…π‘Žπ‘‘π‘’< 1 2 . 2016: LCC locality 𝑛 = 2 ~ log 𝑛 & π‘…π‘Žπ‘‘π‘’β†’1 β‡’β„“ 𝑛 = 2 ~ log 𝑛 meeting Singleton Bound β‡’β„“ 𝑛 = 2 ~ log 𝑛 binary, Zyablov bound. (locally correcting half-the-distance!) LTC locality 𝑛 =~poly log 𝑛 & π‘…π‘Žπ‘‘π‘’β†’1 β‡’ … Singleton Bound, Zyablov bound … April 9, 2016 Skoltech: Locality in Coding Theory

19 Skoltech: Locality in Coding Theory
Main References 2 Multiplicity codes [KoppartySarafYekhanin’10] See also Lifted Codes [GuoKoppartySudan’13] Expander codes [HemenwayOstrovskyWootters’13] Tensor codes [Viderman β€˜11] (see also [GKS’13] ) Above + Alon-Luby composition: [KoppartyMeirRon-ZewiSaraf’16a] A β€œZig-Zag” construction with above ingredients: [KMR-ZS’16b] 1 3 4 April 9, 2016 Skoltech: Locality in Coding Theory

20 Skoltech: Locality in Coding Theory
Lifted Codes Codes obtained by inverting decoder: Recall decoder for RM codes. What code does it decode? 𝐢 π‘š,π‘Ÿ,π‘ž = 𝑓: 𝔽 π‘ž π‘š β†’ 𝔽 π‘ž deg 𝑓 ​ 𝐿 β‰€π‘Ÿ βˆ€ 𝐿} What we know: RM π‘š,π‘Ÿ,π‘ž βŠ† 𝐢 π‘š,π‘Ÿ,π‘ž Theorem [GKS’13]: 𝛿(𝐢 π‘š,π‘Ÿ,π‘ž )β‰ˆπ›Ώ RM π‘š,π‘Ÿ,π‘ž π‘…π‘Žπ‘‘π‘’ 𝐢 π‘š,π‘Ÿ,π‘ž β†’1 if π‘ž= 2 𝑑 and π‘‘β†’βˆž Local decodability by construction. Local testability [KaufmanS’07,GuoHaramatyS’15]. April 9, 2016 Skoltech: Locality in Coding Theory

21 Skoltech: Locality in Coding Theory
Why does Rate 𝐢 π‘š,π‘Ÿ,π‘ž β†’1? Example: π‘š=2 Some monomials OK! E.g. π‘ž= 2 𝑑 ; π‘Ÿ= π‘ž 2 ; 𝑓 π‘₯,𝑦 = π‘₯ π‘Ÿ 𝑦 π‘Ÿ satisfies deg 𝑓 ​ 𝑙𝑖𝑛𝑒 β‰€π‘Ÿ for every line! π‘₯ π‘Ÿ π‘Žπ‘₯+𝑏 π‘Ÿ = 𝑏 π‘Ÿ π‘₯ π‘Ÿ + π‘Ž π‘Ÿ π‘₯ (mod π‘₯ π‘ž βˆ’π‘₯) As π‘Ÿβ†’π‘ž many more monomials Proof: Lucas’s lemma + simple combinatorics April 9, 2016 Skoltech: Locality in Coding Theory

22 Skoltech: Locality in Coding Theory
Multiplicity Codes Basic example Message = (coeffs. of) poly π‘βˆˆ 𝔽 π‘ž π‘₯,𝑦 . Encoding = Evaluations Local-decoding via lines. Locality = O 𝑛 More multiplicities β‡’ Rate β†’1 More derivatives β‡’ Locality β†’ 𝑛 πœ– of 𝑝, πœ•π‘ πœ•π‘₯ , πœ•π‘ πœ•π‘¦ over 𝔽 π‘ž 2 . Length = 𝑛= π‘ž 2 ; Alphabet = 𝔽 π‘ž 3 ; Rate β†’ 2 3 April 9, 2016 Skoltech: Locality in Coding Theory

23 Skoltech: Locality in Coding Theory
Multiplicity Codes - 2 Why does Rate β†’ 2 3 ? Every zero of 𝑝, πœ•π‘ πœ•π‘₯ , πœ•π‘ πœ•π‘¦ ≑ two zeroes of 𝑝 Can afford to use 𝑝 of degree β†’2π‘ž. Dimension ↑ Γ—4 ; But encoding length ↑×3 (Same reason that multiplicity improves radius of list-decoding in [Guruswami,S.]) April 9, 2016 Skoltech: Locality in Coding Theory

24 State-of-the-art as of 2014
βˆ€πœ–,𝛼>0 βˆƒπ›Ώ= 𝛿 πœ–,𝛼 >0 s.t. βˆƒ codes w. Rate β‰₯1βˆ’π›Ό Distance β‰₯𝛿 Locality = 𝑛 πœ– Promised: Locality 𝑛 π‘œ(1) Singleton bound [What if you need higher distance?] Zyablov bound [What if you want a binary code?] April 9, 2016 Skoltech: Locality in Coding Theory

25 Alon-Luby Transformation
Key ingredient in [Meir14], [Kopparty et al.’15] Expander-based Interleaving Short MDS Rate β†’1 Code Message Encoding April 9, 2016 Skoltech: Locality in Coding Theory

26 Alon-Luby Transformation
Key ingredient in [Meir14], [Kopparty et al.’15] Rate β†’1 Code Short MDS Expander-based Interleaving Message Encoding Rate/Distance of final code ~ Rate of MDS [Meir] Locality ~ Locality of Rate 1 code Proof = Picture April 9, 2016 Skoltech: Locality in Coding Theory

27 Subpolynomial Locality
Apply previous transform, with initial code of Rate 1βˆ’π‘œ(1) and locality 𝑛 π‘œ(1) ! [e.g., multiplicity codes with π‘š=πœ”(1)] Singleton bound Zyablov bound? Concatenation [Forney’66] April 9, 2016 Skoltech: Locality in Coding Theory

28 Part 4: Locally Testable Codes (after break)
April 9, 2016 Skoltech: Locality in Coding Theory


Download ppt "Locality in Coding Theory"

Similar presentations


Ads by Google