Download presentation
Presentation is loading. Please wait.
Published byMelvyn Norman Modified over 6 years ago
1
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
Experimental nuclear astrophysics: studying the stars in the laboratory György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary Szilárd Leó Colloquium, BME, 10 October 2017
2
Research at ATOMKI http://www.atomki.hu Research topics:
Experimental and theoretical nuclear physics Atomic physics Ion beam analysis Environmental science Solid state physics etc… Main facilities: K20 cyclotron 1 MV and 5MV Van de Graaff (new) Tandetron Accelerator Mass Spectrometry Microprobe Target laboratory ECR ion source Electron spectrometer SIMS/SNMS surface analysis device Radiochemistry lab …
3
Research activities of the nuclear astrophysics group of ATOMKI
Underground experiments: low cross section measurements (LUNA collaboration) Experiments for the astrophysical p-process Study of the electron screening effect Half-life measurements relevant to astrophysics RIB experiments relevant to astrophysics 7Be isotope production for nuclear astrophysics experiment Application of the Trojan Horse indirect method etc...
4
Energy generation of stars
A nap belsejében sunrise sunset Nuclear reactions Main sequence stars: hydrogen burning Conversion of 4 protons into one 4He pp-chain(s) Inside the Sun
5
pp-chains of hydrogen burning
6
The original sin: stars have time
Sun A supernova 15 million K 1.3 keV (Coulomb barrier: keV) << barn 10 billion years ~ 1 billion K ~100 keV < 10-9 barn ~ 1 s
7
Relevant energies in nuclear astrophysics
tunneling probability Maxwell-Boltzmann distribution
8
Danger of extrapolation
Raw experimental data K.W. McVoy et al., Nucl. Phys. A542 (1992) 295
9
Danger of extrapolation
Theoretical model
10
Danger of extrapolation
11
Danger of extrapolation
Different parameters
12
Danger of extrapolation
Different theoretical description
13
Astrophysical example: 3He + 3He 4He +2p
14
Astrophysical S-factor
? Barrier penetration steeply (exponentially) dropping cross section S-factor: smoother energy dependence Contains nuclear physics Easier to extrapolate S(E) = E·(E)·exp(2) 2 = Z1 Z2 (/E)0.5
15
Astrophysical example: 3He + 3He 4He +2p
5 orders of magnitude !!!
16
Experimental difficulties
Low cross section low count rate High intensity beams Long measurements Background reduction Cosmic rays are difficult to avoid let’s go underground
17
LUNA: watching the stars from the deep
Laboratori Nazionali del Gran Sasso 1400 m depth LUNA collaboration: Laboratory for Underground Nuclear Astrophysics " Some people are so crazy that they actually venture into deep mines to observe the stars in the sky ". (Naturalis Historia - Plinio, ad)
18
Firts measurements directly at solar energies
LUNA 1998 1 event in 2 weeks!!!
19
LUNA experiments 1992-2017 23Na(p,)24Mg 17O(p,)18F 14N(p,)15O
7Be(p,)8B d(,)6Li 25Mg(p,)26Al 3He(,)7Be 22Ne(p,)23Na 3He(d,p)4He 15N(p,)16O 17O(p,)14N d(p,)3He
20
One of the most recent LUNA results
17O(p,)14N cross section measurement „A long-standing puzzle on the origin of stardust recovered from meteorites has finally been solved thanks to the better understanding of nuclear reactions happening in stars producing such dust grains.”
21
“Composition” of the Universe
Fe-Ni Big bang, H, He, (7Li) Stellar burning stages, C-Fe Heavy elements: s-, r-, p-processes, Fe-U Cosmic ray, Li, Be, B
22
Synthesis of heavy elements
p-process s-process r-process
23
p-process p-isotopes r-process r-isotopes Zr Y Sr (n,g) Rb Kr Br (b-)
Neutron number Proton number Zr Y Sr (n,g) Rb p-isotopes Kr Br (b-) Se As r-process (b+) Ge Ga Zn r-isotopes Cu Ni Co Fe
24
p-nuclei (p-nuts): the unknown Universe
78Kr 84Sr 92Nb 92,94Mo 96,98Ru 102Pd 106,108Cd 113In 112,114Sn 120Te 124,126Xe 130,132Ba 138La 136,138Ce 144,146Sm 156,158Dy 162Er 168Yb 174Hf 180Ta 180W 184Os 190Pt 196Hg mainly even-even nuclei 0.1-1% isotopic abundance mass number s - process r p 10 2 1 3 4 5 abundance (Si = 106) -1 -2 -3 -4 -5
25
The synthesis of p-isotopes
Secondary process Gamma-induced /mainly (,n)/ reactions on s- and r-process seed isotopes (-process) High temperature needed: supernova explosions (,n) 108Sn 109Sn 110Sn 111Sn 112Sn 113Sn 114Sn 115Sn 116Sn (,) (,p) 106Cd 108Cd 25 25 25
26
Courtesy: S. Goriely
27
p-process reaction network
~ 2000 isotopes ~ reactions Mainly (,n), (,), (,p) reaction and beta decays The models are not able to reproduce the observed p-isotope abundances I. Dillmann et al., J. Phys. G 35 (2008) Mo 27
28
Contradicting theory, no experiment
29
Experiments in Debrecen
ERC Starting Grant „Nuclear reaction studies relevant to the astrophysical p-process nucleosynthesis” Experiments in Debrecen Alpha-induced reactions: 5-15 MeV Cyclotron Proton-induced reactions: 1-4 MeV Tandetron, (Van de Graaff)
30
Testing theoretical calculations
31
Direct influence on p-process networks
(,) (,) (,) (,p) (,p) (,p) (,n) (,n) (,n) 106Cd 108Cd 110Cd old Main reaction path based on the reaction rates new secondary paths T = 2.0·109 K
32
Outlook 1: Racing with astronomers
CNO cycle Solar composition problem: contradiction between Helioseismology (high precision) Solar model, supported by neutrino detection (high precision) 14N(p,)15O More precise reaction cross sections needed!
33
Outlook 2: Studying unstable nuclei
Many astrophysical processes involve short-lived radioactive nuclei Radioactive Ion Beam facilities needed
34
Thank you for your attention!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.