Download presentation
Presentation is loading. Please wait.
1
Modeling Space/Time Variability with BMEGUI
Prahlad Jat(1) and Marc Serre(1) (1) University of North Carolina at Chapel Hill
2
Agenda Introduction Mean Trend Analysis Space/Time Covariance Analysis
3
Introduction
4
Temporal GIS analysis process
Read Data File Data Field Screen Check Data Distribution Data Distribution Screen Exploratory Data Analysis Screen Exploratory Data Analysis Mean Trend Analysis Screen Mean Trend Analysis Space/Time Covariance Analysis Screen Covariance Analysis BME Analysis BME Estimation Screen
5
Mean Trend Analysis Screen
Display temporal mean trend Display spatial mean trend (Raw & Smooth) Model Parameter (Exponential Smoothing)
6
Space/Time Covariance Analysis Screen
Display spatial & temporal covariance Plot covariance models
7
Mean Trend Analysis
8
Mean Trend Calculation
Assume a separable additive space/time mean trend model Input Parameter Spatial Radius/Spatial Range Temporal Radius/Temporal Range Averaging the measurement at each MS (or at each time point) Find measurements within “Radius” , then apply exponential filter
9
Smoothed Mean Trend Sradius Tradius
10
Z - (SSM+STM-mean(STM))
Remove Mean Trend Removing the mean trend from data Z - (SSM+STM-mean(STM)) Z: Value SSM: Smoothed Spatial Mean Trend STM: Smoothed Temporal Mean Trend
11
Calculate Mean Trend Click “Model mean trend and remove it from data”
BMEGUI automatically calculate mean trend using the default parameters
12
Temporal Mean Trend Raw Temporal Mean Trend is shown in dotted line
Smoothed Temporal Mean Trend in shown in solid line Zoom in/out
13
Spatial Mean Trend Two tabs – Spatial Mean Trend (Raw)
Spatial Mean Trend (Smoothed) Zoom in/out Point Layer File
14
Recalculate Mean Trend
Input parameters and click “Recalculate Mean Trend” button Spatial Radius/Spatial Range Temporal Radius/Temporal Range Spatial Range Spatial Radius Click Button Temporal Radius Temporal Range
15
Space/Time Covariance Analysis
16
Space/Time Covariance Analysis
Experimental Covariance (Red dots) Fit experimental covariance with covariance model (Solid Line)
17
Spatial/Temporal Components
Two tabs Spatial Component Temporal Component Temporal Component Tab Spatial Component Tab
18
Experimental Covariance
BMEGUI automatically calculate experimental covariance using the default lag setting User can modify the lag setting Change the number of lags Input user-defined lag and lag tolerance
19
Change number of lags Input the number of lags, then click “Recalculate Spatial/Temporal Covariance” button Recalculate Spatial Cov. Number of lags for Spatial Cov. Recalculate Temporal Cov. Number of lags for Temporal Cov.
20
Modify lag and lag tolerance
Click “Edit Spatial/Temporal Lags…” Input lag and tolerance in dialog box, then click “OK” (Use “,” to separate the values)
21
Covariance Model BMEGUI supports
homogeneous/stationary Space/Time random field Space/Time separable model Maximum four model structures Following covariance model exponential gaussian spherical holecos holesin
22
Set the number of model structures
Input the number into text box (1-4) The number of tabs will change
23
Select covariance model
Select model from the combo box Input sill and range, then click “Plot Model”
24
Clear covariance model
Plot “Clear Plot” button Covariance model will be erased from the figures
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.