Download presentation
Presentation is loading. Please wait.
Published bySilvia Crawford Modified over 6 years ago
1
2nd International Conference on Algal Biorefinery, DTU, Lyngby, Denmark
27th – 29th August 2014 Microalgae as a protein rich livestock feed ingredient in The Netherlands: an environmental sustainability analysis Sue Ellen Taelman(a), Steven De Meester(a), Wim Van Dijk(b), Vamilson da Silva(c), Jo Dewulf (a) (a) Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium (b) Application Center for Renewable Resources, Wageningen University and Research Centre, P.O. Box, 8200 AK, Lelystad, The Netherlands. (c) Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Caixa Postal 476. CEP Florianópolis, Brazil
2
What is the most sustainable protein rich alternative?
Introduction (1) Demand for vegetable protein feed sources increases Import of proteins in the EU: soybean crops, mainly from Brazil Deforestation, fossil fuel use, .. Sustainable? Alternative : algae as renewable protein source Potential: Up to 50% proteins Considered to be highly productive Cultivation on marginal land possible … What is the most sustainable protein rich alternative?
3
Introduction (2) EnAlgae: INTERREG IVB North West Strategic Initiative (03/2011 – 06/2015) 9 pilot scale algae cultivation sites (micro- and macroalgae) -> one of these located in Lelystad, The Netherlands -> Integrated microalgal biorefinery Goal of this study: (1) Determining the natural resource footprint of protein rich algal meal for livestock feed applications in The Netherlands (2) Comparison with soybean crop production in Brazil and transport to The Netherlands
4
Env. Sustainability Analysis
Life Cycle Assessment (LCA), ISO standards & 14044 Functional unit: basket of products System boundaries: cradle-to-gate Foreground: 95% gathered at the site Background: database ecoinvent v2.2 Resource consumption (CEENE) Dewulf et al. 2007
5
10.2% DW 500 m² 3241 kg DW.ha-1.y-1
6
LCA (cradle-to-gate) System expansion based on functionalities to avoid allocation
7
LCA results (CEENE method)
MJex/functionalities Abiotic Renewables Fossil fuels Nuclear resources Metal ores Minerals Water Land use Atmospheric TOTAL Relative contribution (%) Digestion 2.64E+01 6.86E+02 6.66E+01 5.51E-01 9.04E-01 4.64E+01 1.41E+03 0.00E+00 2.21E+03 72.74 CHP process 6.35E+00 1.48E+02 1.53E+01 7.40E-02 3.68E-02 1.17E+01 4.23E+00 1.86E+02 6.14 Condensation 3.01E+00 7.08E+01 7.30E+00 1.57E-02 1.51E-02 5.58E+00 1.99E+00 8.87E+01 2.93 Inoculum production 1.76E+00 2.67E+01 5.51E+00 3.22E-02 2.50E-02 8.62E+00 9.40E-01 4.36E+01 1.44 Algae cultivation T2 7.12E+00 1.68E+02 1.74E+01 8.16E-02 5.12E-02 2.30E+01 7.60E+00 2.24E+02 7.37 Algae cultivation T1 7.10E+00 1.73E+01 8.18E-02 5.33E-02 7.59E+00 2.23E+02 7.35 Dewatering T2 1.00E+00 2.35E+01 2.42E+00 7.18E-03 5.79E-03 1.85E+00 6.65E-01 2.94E+01 0.97 Dewatering T1 Drying 7.69E-03 2.79E+00 1.39E-02 1.95E-04 2.92E-04 5.54E-03 2.54E-03 2.82E+00 0.09 Crushing 2.06E-03 1.32E-01 5.07E-03 1.29E-05 2.35E-05 4.34E-03 2.10E-03 1.46E-01 0.00 5.38E+01 1.32E+03 1.34E+02 8.51E-01 1.10E+00 1.22E+02 1.43E+03 3.03E+03 1.77 43.44 4.43 0.03 0.04 4.02 47.16
8
LCA (cradle-to-gate) A basket of products delivered by the linear (soybean based) economy and (algae based) biorefinery Prudêncio da Silva et al. 2010
9
LCA results (CEENE method)
MJex/functionalities Abiotic Renewables Fossil fuels Nuclear resources Metal ores Minerals Water Land use Atmospheric TOTAL Relative contribution (%) LINEAR ECONOMY Soybean cultivation 1.18E-02 2.69E-01 2.79E-02 7.15E-04 6.91E-04 2.57E-02 4.81E+00 0.00E+00 5.15E+00 91.47 Drying 6.97E-04 2.33E-03 9.15E-04 2.03E-05 3.92E-05 1.76E-04 1.75E-01 1.80E-01 3.19 Crushing 1.45E-02 7.76E-02 1.68E-03 1.26E-05 2.23E-05 1.28E-03 3.52E-03 9.86E-02 1.75 Export to The Netherlands 2.96E-03 1.74E-01 1.04E-02 1.46E-04 7.32E-04 4.65E-03 9.29E-03 2.02E-01 3.58 2.99E-02 5.23E-01 4.08E-02 8.94E-04 1.48E-03 3.18E-02 5.00E+00 5.63E+00 0.53 9.29 0.73 0.02 0.03 0.56 88.85 0.00 BIOREFINERY Algae cultivation 2.04E+01 4.68E+02 5.10E+01 2.20E-01 1.53E-01 6.29E+01 1.91E+01 6.22E+02 99.53 7.69E-03 2.79E+00 1.39E-02 1.95E-04 2.92E-04 5.54E-03 2.54E-03 2.82E+00 0.45 1.84E-03 1.18E-01 4.51E-03 1.15E-05 2.09E-05 3.86E-03 1.87E-03 1.30E-01 2.05E+01 4.72E+02 5.11E+01 1.54E-01 6.30E+01 6.25E+02 3.28 75.50 8.18 0.04 10.08 3.06 Factor 100 difference could be expected: mature large scale technology (soybean) versus young small scale technology (algae)
10
Conclusion Improvements in terms of energy efficiency necessary to become competitive with protein rich soy meal Modified sensitivity test (electricity based on wind energy, lower working hours for blowers and mixing devices, more energy efficient blower, higher harvested fraction and algal productivity) reveals promising results! Further research: Process optimization (e.g. recycling of centrates, digestate or livestock manure as nutrients for algae, …) Protein digestibility LCA: emission footprint
11
Thank you! +32 (0)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.