Download presentation
Presentation is loading. Please wait.
Published byRosamond O’Brien’ Modified over 6 years ago
1
Formation of Meson-Nucleus Bound Systems by (g,p) reactions
@Japan-US Workshop on Electromagnetic Meson Production and Chiral Dynamics 9 Apr. ’05 S. Hirenzaki (Nara Women’s Univ.)
2
Features ( cf Invariant Mass Methods)
Objects Hadron – Nucleus bound systems. Coulomb + Strong … Exotic Atoms (Deeply Bound) atom, Kaonic atom, atom … Strong … Exotic Nuleus Mesic Nucleus, Hypernuclei, … Exotic Many Body Systems. In Medium Hadron Properties. Spectroscopic Methods ( Peak structure) Quasi-Static Systems around Interests Features ( cf Invariant Mass Methods)
3
Basic Concepts In-Medium Dispersion Relation look carefully !! initial
: Missing Mass ( Invariant Mass) Bound States look carefully !! Peaks!! initial final N Zoom In meson Medium Effects In-Medium Dispersion Relation
4
Formation Cross Section by ‘pick-up’ reactions, (g, N), (d,3He), (K,N), …
Effective Number approach Recoilless Substitutional States formation For large widths systems; Green function Method by O. Morimatsu, K. Yazaki, NPA 435, 727 (85), NPA 483, 493 (88) :smaller distortion, background large? Experimental data or Theoretical model
5
Pionic 1s states of Sn nuclei
Umemoto, Hirenzaki, Kume, Toki PRC62(00)024606 K. Suzuki et al. PRL (04)
6
There are active discussions
K. Suzuki et al., Phys. Rev. Lett. 92(2004)072302 observation Kolomeitsev, Kaiser, Weise (PRL90(2003)092501) in two-loop chiral perturbatio Energy dependent of Gauge coupling of Phenomenological pieces, ( , p-wave terms) Discussion on rn (n>1) ?… (Garcia-Recio, Nieves, Oset, PLB541(2002)64) E. Friedman and A. Gal, PLB578(2004)85 G. Chanfray, M. Ericson, M. Oertel, PLB563(2003)61 ‘Chiral Restoration in nonlinear realization’ D. Jido, T. Hatsuda, T. Kunihiro, PRD63(2000)011901 U.-G. Meissner, J. Oller, A. Wirzba, … Ann. Phys. 297 (2002) 27 are important
7
Kinematics of (g, N) at forward angles
500 400 q [MeV/c] 300 200 100 500 1500 2000 2500 3000 p atom w mesic Nuclei S. Hirenzaki, E. Oset E. Marco, W. Weise Phys. Lett. B527 (2002) 69 Phys. Lett. B502 (2001) 59
8
We consider here (g,p) – (K,N) – K nucleus (K,p) – nucleus
D. Jido, H. Nagahiro, S. Hirenzaki : PRC66(02)045202 H. Nagahiro, D. Jido, S. Hirenzaki : PRC68(03)035205 H. Nagahiro, S. Hirenzaki : hep-ph/ H. Nagahiro, D. Jido, S. Hirenzaki : in preparation J. Yamagata, H. Nagahiro, Y. Okumura, S. Hirenzaki : nucl-th/ H. Nagahiro, S. Hirenzaki, E. Oset, M.J. Vicente-Vacas : nucl-th/ , v2
9
h -Nucleus system : Introduction
works for eta-mesic nuclei D. Jido and H. Nagahiro * Liu, Haider, PRC34(1986)1845 * Chiang, Oset, and Liu, PRC44(1988)738 * Chrien et al., PRL60(1988)2595 * Hayano, Hirenzaki, Gilltzer, Eur.Phys.J.A6(1999)99 * D. Jido, H.Nagahiro, S.Hirenzaki PRC66(2002)045202 * Exp. at GSI (2005?) (Yamazaki, Hayano group) (d,3He) properties of eta meson eta meson system -No baryon contamination -Large coupling constant -no suppression at threshold (s-wave coupling) eta-N system Strong Coupling to N*(1535), eta-Nucleus system Doorway to N*(1535)
10
h -Nucleus Interaction
~ N* dominance model ~ optical potential (Chiang, Oset, Liu PRC44(1991)738) (D.Jido, H.N., S.Hirenzaki, PRC66(2002)045202) to reproduce the partial width at tree level. potential nature In free space attractive N & N* properties in medium evaluated by two kinds of Chiral Models General feature medium effect Repulsive ?? mN & mN* change ?? ?
11
Chiral models for N and N*
Chiral doublet model DeTar, Kunihiro, PRD39 (89)2805 Jido, Oka, Hosaka, Nemoto, PTP106(01)873 Jido, Hatsuda, Kunirhiro, NPA671(00)471 Lagrangian Physical fields N* : chiral partner of nucleon Mass difference * reduction of mass difference * C~0.2 :the strength of the Chiral restoration at the nuclear saturation density Chiral unitary model Kaiser, Siegel, Weise, PLB362(95)23 Waas, Weise, NPA625(97)287 Garcia-Recio, Nieves, Inoue, Oset, PLB550(02)47 Inoue, Oset, NPA710(02) 354 A coupled channel Bethe-Salpeter eq. * No mass shift of N* is expected in the nuclear medium. * In this study, we directly take the eta-self-energy in the ref.NPA710(02)354 * the N* is introduced as a resonance generated dynamically from meson-baryon scattering.
12
h -Nucleus optical potential
associated with mass reduction
13
(g,p) Spectra of 12C target Bound state @Japan_US Workshop, 9 Arp. ‘05
enhanced It seems impossible to observe b.s. as a peak from the spectrum. (g,p) We can see the difference between two models clearly.
14
h’(958)-Nucleus System : Introduction
H. Nagahiro h’(958) meson Close relation to UA(1) anomaly heavy h’ mass due to the existence of anomaly term some theoretical works in vacuum / at finite temperature / at finite density T.Kunihiro, T.Hatsuda, PLB206(88)385 T. Kunihiro, PLB219(89)363 R.D.Pisarski, R.Wilczek, PRD29(84)338 K.Fukushima, K.Onishi, K.Ohta, PRC63(01)045203 P. Costa et al.,PLB560(03)171, hep-ph/ etc…
15
Models with NJL Lagrangian + KMT interaction
Anomaly effect in vacuum KMT term T.Kunihiro, T.Hatsuda, PLB206(88)385, Fig.3 u d s Meson Mass u s d flavor mixing vertex Large h and h’ mass due to anomaly
16
Anomaly effect @ finite T / r
at finite Tempereture P. Costa, M. C. Ruivo, Yu. L.Kalinovsky PLB560(03)171, Fig.2 at finite density : const T.Kunihiro, PLB219(89)363, Figs.2, 3 : const T0=100 MeV Case I Case II
17
Our motivation & present work
a poor experimental information on the UA(1) anomaly at finite density h’(958)-mesic Nucleus formation reaction UA(1) anomaly in medium h, h’ mass shift observation new information on the properties of UA(1) anomaly ? We consider … NJL Lagrangian + KMT term h’ spectra h and h’ in the same framework cf. chiral doublet, chiral unitary models. h and h’ mesic nuclei formation cross section
18
h- & h’-Nucleus optical potential
~ phenomenological estimation Real Part V0 evaluated by possible h, h’ mass shift at r0 Imaginary Part W0 for h’ estimated from nucl-th/ (A.Sibirtsev,Ch.Elster, S.Krewald, J.Speth) analysis of gp h’p data N N*(1535) h’ g (only one resonance included) fix a coupling g ’ in analogy with D-hole model for the p-nucleus system ’
19
mass shifts of h and h’ mesons
(1) Constant gD in medium P. Costa et al., PLB560(03)171, Fig.2 Dmh’ ~ -150 r = r0 Dmh ~ +20 r = r0 (2) Smaller gD in medium … no information … An estimation from the fig. in T.Kunihiro, T.Hatsuda, PLB206(88)385, Fig.3 (Notice : This fig. shows the results in Vacuum.) Dmh’ ~ -150 MeV Dmh ~ -100 MeV @ r = r0
20
Reaction Parameters w-mesic nuclei (g,p) reaction @ Eg=2.7 GeV
target … 12C Forward (q ~ 0 deg.) Elementary cross section for gp h’p w-mesic nuclei mh ~ 547 MeV mw ~ 783 MeV mh’ ~ 958 MeV plan of experiment for the formation of w-mesic SPring-8, 2005 two different predictions for optical potentials 【Attractive】 V= - ( i) r/r0 MeV [Klingl, Waas, Weise NPA650(99)299] 【Repulsive】V= - ( i) r/r0 MeV [Lutz, Wolf, Friman NPA706(02)431] elementary cross section ~ 150 nb/sr event # [h] ~ [w] ~ [h’] @ test experiment at SPring [N.Muramatsu, private communication] h-mesic nuclei Data:SAPHIR collaboration, PLB444(98) Chiang, Yang, PRC68(03)045202
21
Numerical results : 12C(g,p)11Bh,w,h’
quasi-free V0= - (150+5i) [MeV] V0= - (156+29i) [MeV] (Weise) V0 = - (100+40i) [MeV] mass small
22
Numerical results : 12C(g,p)11Bh,w,h’
quasi-free h w h’ V0= - (150+20i) [MeV] V0= - (156+29i) [MeV] (Weise) V0 = - (100+40i) [MeV] mass small
23
Numerical results : 12C(g,p)11Bh,w,h’
quasi-free h w h’ V0= - (150+20i) [MeV] V0= - (156+29i) [MeV] (Weise) V0 = - (-20+40i) [MeV] mass large
24
Numerical results : 12C(g,p)11Bh,w,h’
quasi-free h w h’ V0= - (150+20i) [MeV] V0= - ( i) [MeV] (Lutz) V0 = - (-20+40i) [MeV] mass large
25
Numerical results : 12C(g,p)11Bh,w,h’
quasi-free h w h’ V0= - (150+20i) [MeV] V0= - ( i) [MeV] (Lutz) V0 = - (100+40i) [MeV] mass small
26
Summary (g,p) spectra of both h and h’ with w meson h mesic nuclei in
Chiral doublet (N*(1535) dominance) Chiral Unitary h and h’ in the same framework (NJL+KMT) Reasonably large cross sections observation S/N ~ 1/10 … N.Muramatsu, private communication the experiment for the formation of w-mesic nuclei @ SPring-8 (planned) (information on h & h’ as byproducts ?) in Future What the peak position means? more microscopic treatment for h and h’-nucleus interaction
27
Kaonic Bound States Formation by In-flight (K-,N) reaction
J. Yamagata J. Yamagata H. Nagahiro Y. Okumura S. Hirenzaki nucl-th/
28
Energy Spectrum – 16O(In-flight K-,p)
Comparison Exp. vs Calculated results 16O(In-flight K,n) PK = 930 MeV/c 16O(In-flight K-,p) PK = 976 MeV/c Bound region Data by Kishimoto group. (Osaka Univ.) ? [ T.Kishimoto et al., Prog. Theor. Phys. Suppl. 149 (2003)264 ] [ Fig. taken from the seminar by Dr. Hayakawa ]
29
Q Hyper Nuclei formation
H. Nagahiro, S. Hirenzaki, E. Oset, M.J. Vicente-Vacas, nucl-th/ , v2 Interaction of the Q+ with the nuclear medium Working Hypothesis Q+ : , belongs to SU(3) antidecuplet SU(3) symmetric Lagrangian N*(1710) also belongs to antidecuplet N*(1710) Npp decay deta fix the coupling const. D. Cabrera et al., PLB 608(2005)231 A. Hosaka et al., hep-ph/ PRC in print : antidecuplet states : octet of ½+ baryons : octet of 0- mesons H. Nagahiro S. Hirenzaki E. Oset M.J. Vicente-Vacas where : a vector current for two mesons attractive interaction diagram Q+ N p K In the nuclear medium, new channels are open.
30
Q+ hypernuclei formation reaction
Possible process Reported process in Prof. Nakano’s experiment (g, K–) Q+ g K– n Proposal at J-Lab reaction (R. J. Feuerbach(spokesperson)) theoretical vertices, Q+ into MMB, in the SU(3) Lagrangian [D. Cabrera et al., PLB 608(2005)231, A. Hosaka et al., hep-ph/ , PRC in print.] Q K+ p– p K0 p0 p K0 h p K+ p0 n K+ h n K0 p+ n charged Q K+ p– p K0 p0 p K0 h p K+ p0 n K+ h n K0 p+ n Q+ B M (K+,p+) (p–, K–) Notice : (p-,K-) could be very small (KEK exp.)
31
12C target case : VQ= -60 r/r0 [MeV]
free Q+ production threshold (s-state proton pick-up case) free Q+ production threshold TK=300MeV pK~620MeV/c quasi-free Q+ region clear peak separated from each other. Reasonable cross section of the order of [micro b/sr MeV] not too small
32
12C target case : VQ= -120 r/r0 [MeV]
TK=300MeV pK~620MeV/c We can see clear peaks. quite different spectrum from V=-60 r/r0 MeV case. more bound states for V=-120 r/r0 MeV narrower peaks due to the deeper bound states we may be able to distinguish these two type potentials by the spectrum, if we can see.
33
12C target case : energy dependence
We also calculate TK=500MeV(pK=863MeV/c) case. momentum transfer q doesn’t change drastically.
34
Summary on Q+ hypernuclei
Summary on K Narrow K-Nuclear state, Ultra high density matter, Really exists ?? In flight (K,p) reaction theoretical results Kishimoto exp. Need systematic comparison of theoretical results and exp. data Summary on Q+ hypernuclei Q+ hypernuclei formation by (K+,p+) reaction New frontier of S=+1 hypernuclei ? (or just a dream) Many Unknowns … Let’s try !
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.