Download presentation
Presentation is loading. Please wait.
Published byDarrell McKenzie Modified over 6 years ago
1
Radiation Monitor: Concepts, Simulation for an Advanced Read Out
R.Cardarelli end A.Di Ciaccio INFN-Roma Tor Vergata Super-B Collaboration meeting 31/05/2012 Isola d’Elba La Biodola
2
Outline Location of the beam monitor in the Super-B detector
Geant4 simulation to define the parameters of the monitor detector and F.E. electronic Test of a mono c. v.s. poli c. diamond detector with SiGe amplifier Conclusions and future plane
3
Radiation Monitor near SVT
. Diamond detectors Primary goal: protect the SVT from high beam losses Next features: time of flight measurements to distinguish collisions events from background
4
Geant4 beam monitor simulation
5
Tentative detector shape
R1 = 18.2 mm R = 18 mm L = 7 mm S = 1 mm R = 12 mm S = 1 mm
6
Geant4 results: rate per mm**2 for radiative Babbha
Expected rate on Beam-monitor rings 1, 2 Bins da 1mm2 Highest rate about 0.25 MHz / mm2 (on Backward) Possible explanation : SuperB beam asymmetry Forw Back
7
Geant4 results : Edep Rate vs Edep Possible threshold at 150 KeV
Violet band Particelle al minimo di ionizzazione
8
Geant4: time of flight 70 ps
9
Geant4 summary results L = 1 x 1036 cm-2 s-1
Rate (MHz) Edep/sec (GeV/s) nHits/Event Edep/Hit (GeV) Rate/mm2 (MHz/mm2) % Hits (>150KeV) Z (mm) Tube Ext (Back) 19.9 1780 0.09 9.0x10-5 0.035 22% -80 Tube Ext 2 (Back) 46.4 2080 0.20 4.5x10-5 0.082 10% -126 Tube Ext (Forw) 12.8 1115 0.06 8.7x10-5 0.023 21% 80 Tube Ext 2 (Forw) 30.0 1305 0.13 4.3x10-5 0.053 126
10
Diamond Detector (area 16mm**2)
Rate/mm2 (MHz/mm2) Tube Ext (Back) 0.035 Tube Ext 2 (Back) 0.082 Tube Ext (Forw) 0.023 Tube Ext 2 (Forw) 0.053 CVD Parameters: traccolta: 20ns (on 1mm thickness) tintegr: 30ns Ethr > 150KeV max expected rate in selected regions for beam monitor 82 KHz /mm2 With a detector area of 16mm2 this corresponds to 1312 KHz Only 10% above 150KeV (only 130 KHz counted by the detector). 130 KHz corresponds to 0.3% electronics dead-time
11
Ionization currents on CVD diamonds
Total Edep Edep/sec (GeV/s) Tube Ext (Back) 1780 Tube Ext 2 (Back) 2080 Tube Ext (Forw) 1115 Tube Ext 2 (Forw) 1305 Edep per mm2 al secondo N e-h pair / mm2 X s Area ring Current I per mm2 Energy necessary to produce a e-h pair in diamond For a sensor of 16mm2 an ionization corrente of nA
12
geometry of the detector Diamond detector 4mm x 4mm
8 diamond detector for ring Beam monitor caracteristics L = 1 x 1036 cm-2 s-1 detector sized 8 X16 mm2 leakage current 8 nA Ionization current 0.67 nA hits rate 130KHz Detector Transit time 20 ns Electronic Integration time 30 ns Electric resistance 1011 Ωcm Energy threshold 150KeV Diamond detector 4mm x 4mm
13
Tentative electronic diagram
Disipation power 8µW HV 500 Volt 100 kOhm 10m coax. Cable Ǿ = 0.7 mm Pico Amp Diamond detector amp Coincidence caunter CPU amp
14
BJT Si v.s. SiGe BJT Si BJT performances β=τc/τt ft=1/τt N= K*τt
τc= base life time τt = base transient time τt (Si) >> τt (SiGe) diffusion Fermi energy B E C acceleration BJT SiGe Fermi energy B E C
15
Strategy for a new front-end(SiGe)
A (mV) In signal A T(ns) F= 1 / T T(ns) 100 A (mV) Out signal 100 10 T(ns) 10 100 1000 ft F (MHz)
16
Amplifier, AC, (BJT SiGe, BFP740)
Voltage supply Volt Sensitivity mV/fC noise e- RMS Input impedance Ohm B.W MHz Power consumption mW/ch Low cost – 3 eur./ch Radiation hardness Mrad, 1015 n cm-2
17
Diamond detector under tests
Mono crystal diamond thickness ,5 mm Area x 4 mm2 HV Volt Dissipation power μW
18
Current vs HV (sCVD- diamond detector)
19
Americium Sr-90 Am-241 Sr-90 noise
20
Coincidence with cosmics
. 10ns Diamond detector PM
21
Coincidence with cosmics
2mV 5ns
22
Signal minimum ionization particle
20ns/div. 20ns/div.
23
Drift of the signal shape (s-CVD diamond)
24
Diamond detector under tests
poly crystal diamond thickness ,5 mm Area x 4 mm2 HV Volt Dissipation power μW
25
Poly-CVD Diamond alfa-Am source ( log scale)
26
Idea on a new detector layout
Transient time 5 ns Area 16 mm2 0.25 mm
27
Conclusions A Geant4 MC simulation of the SVT beam monitor was performed to determine Geometry Expected background rate Beam monitor FE electronics specification Next steps: further test of CVD diamonds (mono and poly-cristalline) with beams
28
Alfa Americium – 241 Alfa Americium-241 Noise
29
Amplifier, AC, (BJT SiGe, BFP650)
Voltage supply Volt Sensitivity mV/fC noise e- RMS Input impedance Ohm B.W MHz Power consumption mW/ch Low cost – 3 eur./ch Radiation hardness Mrad, 1015 n cm-2
30
Alfa Americium – 241 Alfa Americium-241 noise
31
Amplificatore RC due stadi, AC, (BJT Si)
Tensione di lavoro Volt Sensibilita’ mV/fC Rumore e RMS Impedenza di ingresso Ohm B.W MHz
32
Simulazione Ove possibile, si sono utilizzate coppie vicine di volumi simili per ottenere un sampling più fine della rate attesa nella regione Tronco di cono inclinato per massimizzare il cammino della particella all’interno del volume
33
Signal minimum ionization particle
40ns/div.
34
Two stage ac amplifier, AC, (BJT Si BFQ67)
Voltage supply Volt Sensitivity mV/fC noise e- RMS Input impedance Ohm B.W MHz Power consumption mW/ch Low cost – 3 eur./ch
35
Noise distribution
36
Parametrizzazione dei rivelatori
Calcolo della corrente di leakage su un sensore al diamante di 1mm x 1mm con una tensione applicata di 500V Resistenza offerta dal sensore Corrente di leakage che attraversa il sensore a fascio spento Per un sensore di 16mm2 si ottiene una corrente leakage di: 0.5x16 = 8 nA ovvero 80 x A La corrente indotta dai fasci è 10 volte minore di quella di leakage quindi si richiede un elettronica in grado di rivelare piccole variazioni della corrente (almeno 1/10 della minima corrente da misurare)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.