Presentation is loading. Please wait.

Presentation is loading. Please wait.

EM characterization of SiC

Similar presentations


Presentation on theme: "EM characterization of SiC"— Presentation transcript:

1 EM characterization of SiC
G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

2 G. De Michele BE-RF, C. Zannini BE-ABP
Outline Why and where we need dispersive materials Techniques for EM characterization of materials Current status for CLIC accelerating structures G. De Michele BE-RF, C. Zannini BE-ABP

3 G. De Michele BE-RF, C. Zannini BE-ABP
Outline Why and where we need dispersive materials Techniques for EM characterization of materials Current status for CLIC accelerating structures G. De Michele BE-RF, C. Zannini BE-ABP

4 Baseline structure and HOM damping
Iris radius  2.35mm WG cross section 11x6.66mm WG length 90mm G. De Michele BE-RF, C. Zannini BE-ABP

5 Baseline structure and HOM damping
SiC cross section  1x1 to 5.6x5.5mm SiC length  30mm+10mm flat Distance tip_SiC-structure_axis  50mm G. De Michele BE-RF, C. Zannini BE-ABP

6 Baseline structure and HOM damping
Double-feed coupler cell with a standard X-band WR-90 width G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

7 G. De Michele BE-RF, C. Zannini BE-ABP
Outline Why and where we need dispersive materials Techniques for EM characterization of materials Current status for CLIC accelerating structures G. De Michele BE-RF, C. Zannini BE-ABP

8 G. De Michele BE-RF, C. Zannini BE-ABP
Motivations The study of EM properties at microwave (μw) frequencies is full of academic importance (materials property research) μw communications and engineering (military, industrial, civil) Clock speeds of electronic devices at μw frequencies require knowledge of permittivity and permeability EM interference (EMI) and EM compatibility (EMC) Various fields of science and technology could profit: agriculture, food engineering, medical treatment, bioengineering High-quality design of the high order mode dampers in CLIC accelerating structures G. De Michele BE-RF, C. Zannini BE-ABP

9 Different techniques for materials characterization
Non-resonant method: Reflection method: open-circuited reflection; short-circuited reflection (S11) Transmission/reflection methods: (S11,S12,S21,S22) Resonator method: The sample forms a resonator or a key part of resonator Dielectric resonator Coaxial surface-wave resonator Split resonator (dielectric sheet sample) G. De Michele BE-RF, C. Zannini BE-ABP

10 Different techniques for materials characterization
Resonant perturbation method: The sample under test is introduced into the resonator and the EM properties are deduced from the changes in resonance frequency and quality factor of the cavity Planar circuit methods (both resonant and non-resonant methods): Stripline Microstripe Coplanar line G. De Michele BE-RF, C. Zannini BE-ABP

11 Different technique for materials characterization
Non-resonant method : possibility to measure EM properties in a wide range of frequencies Resonator method: Measurements possible at single or several discrete frequencies Higher sensitivity and higher accuracy G. De Michele BE-RF, C. Zannini BE-ABP

12 G. De Michele BE-RF, C. Zannini BE-ABP
Outline Why and where we need dispersive materials Techniques for EM characterization of materials Current status for CLIC accelerating structures G. De Michele BE-RF, C. Zannini BE-ABP

13 EM materials properties (T.Pieloni)
G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

14 G. De Michele BE-RF, C. Zannini BE-ABP
Waveguide method High frequency EM characterization: the intersection of the surfaces with the measured S21 yields the possible solutions. Often one obtains the uniqueness of the solution with only two constrains furnished from the complex S21. Imaginary S21 at 10.5 GHz Courtesy C. Zannini, R. Zennaro, T. Pieloni ESK (Germany) type sample shape (mm) εr (10.5 GHz HFSS) (10.5 GHz CST) (28 GHz CST) EKASIC F SiC L49xW49xH10 11.2-j 1.06 (tanδ=0.095) 11.2-j 1.03 (tanδ=0.092) 11.0-j 0.88 (tanδ=0.080) G. De Michele BE-RF, C. Zannini BE-ABP

15 G. De Michele BE-RF, C. Zannini BE-ABP
Coaxial method Pros Wide range of frequency Analytical model very simple and immediate (basic TL theory ) Hopefully one set-up for measurements Cons Mechanical realization Possible air gap a=130μm G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

16 G. De Michele BE-RF, C. Zannini BE-ABP
Coaxial method ESK (Germany) type sample shape (mm) εr (9 GHz CST) EKASIC F SiC d=1.32 D=4.08 12.0-j 1.08 (tanδ=0.090) G. De Michele BE-RF, C. Zannini BE-ABP

17 G. De Michele BE-RF, C. Zannini BE-ABP
Coax and WG methods G. De Michele BE-RF, C. Zannini BE-ABP

18 TL model validation via 3D EM simulations
Simulation to get the scattering parameter S11 for a certain material S11 is the input for the TL model The output of the model should fit with the input of simulations Simulations (measurements) Model G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

19 G. De Michele BE-RF, C. Zannini BE-ABP
Coaxial method Z_DUT, k_DUT Z0, k0 l O. C. 8 9 10 11 12 simulations j j j j j model j j j j j S. C. 8 9 10 11 12 simulations j j j j j model j j j j G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

20 Coaxial method (Teflon)
Z_DUT, k_DUT Z0, k0 l O.C. 18 GHz simulations j TL model j TL model(measurements) S.C. 18 GHz simulations j TL model j TL model(measurements) G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

21 Coaxial method (CerasicB1)
WG method (MWS) WG method (HFSS) COAX method (TL model:airgap 2a=165um) G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

22 Cutoff limit and new geometry
Resonances found also at 11.5GHz,15.5GHz and 31.5GHz New geometry has higher cutoff (around 25GHz) Easy machining Series production in order to evaluate chemical treatment and heat treatment G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele

23 G. De Michele BE-RF, C. Zannini BE-ABP
Future work Machining of the new samples/new geometry Measurements (EkasicF, EkasicP, CerasicB1) until 30GHz: HOM-free up to  25GHz Tolerances study on coaxial/sample variations on scattering parameters. Investigation of influence of chemical and heating treatments on the properties of materials G. De Michele BE-RF, C. Zannini BE-ABP G. De Michele


Download ppt "EM characterization of SiC"

Similar presentations


Ads by Google