Download presentation
Presentation is loading. Please wait.
Published byBrianne Bridges Modified over 6 years ago
1
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
FJPPL meeting, May Paris F. Piquemal ( CEN Bordeaux Gradignan and Laboratoire Souterrain de Modane) France: J. Argyriades, R. Arnold, G. Broudin, S. Jullian, Ch. Marquet, F. Mauger, F. Piquemal, J-S Ricol, L. Simard, X. Sarazin Labs : LAL Orsay, CEN Bordeaux-Gradignan, LPC Caen, IPHC Strasbourg Japan:N. Ishihara, Y. Yamada, M. Nomachi, H. Ohsumi,H. Ejiri, K. Fushimi, R. Hazama,Y. Sugaya Labs: KEK, Osaka U., Saga U., RCNP/OSAKA, U. Tokushima, Hiroshima U.
2
Double Beta decay: physics case
- Leptonic number violation - Nature of neutrino : Dirac (n n) or Majorana (n =n) - Absolute neutrino mass and neutrino mass hierarchy Right-handed current interaction CP violation in leptonic sector Search of Supersymmetry and new particles
3
Neutrinoless Double Beta decay
(A,Z) (A,Z+2) + 2 e- Discovery implies DL=2 and Majorana neutrino Process: parameters Light neutrino exchange <mn> (V+A) current <mn>,<l>,<h> Majoron emission <gM> SUSY l’111,l’113l’131,….. T1/2= F(Qbb,Z) |M|2 <mn>2 -1 Phase space factor Nuclear matrix element Effective mass: <mn>= m1|Ue1|2 + m2|Ue2|2.eia1 + m3|Ue3|2.eia2 |Uei|: mixing matrix element a1 et a2: Majorana phase 5
4
bb(0n) observables From G. Gratta
5
bb(0n) observables Light neutrino exchange V+A current
Minimum electron energy MeV MeV Angular distribution betwen the 2 electrons Cosq Cosq
6
<mn> current and future limits
. HM Cuoricino NEMO3 Klapdor claim Limits in 2009 HM,NEMO3, Inverted hierarchy Normal hierarchy Degenerated Expected limits 2011– 2015 CUORE,GERDA, Majorana, SuperNEMO, EXO, DCBA, CANDLEs…. Use of « latest NME » for all experiments
7
Japanese – french collaboration on DBD
France and Japan have several experiments or projects for double beta decay searches with tracko-calo (e- identification) or calorimeter detectors Collaboration started in 2000 on tracko-calo Common subjects: bb sources, low background, calorimeter - Sources production and purification - Very low background measurements: BiPo detector - Radon detectors - Calorimeter R&D for energy resolution improvement - Electronics - Analysis (NEMO 3)
8
Collaborative work NEMO3 analysis Saga U. Saga U. BiPo MOON
NEMO/SuperNEMO collaboration LAL LPC Caen CENBG IPHC Saga U. NEMO3 analysis Common R&D LAL CENBG Radon detector Saga U. Tracko-calo detector design BiPo MOON Calorimeter Electronics LAL LPC Caen CENBG Osaka U. Tokushima U. Hiroshima U. DCBA D&D KEK
9
e- e- NEMO 3: Neutrino Ettore Majorana Observatory
(France, UK, Spain, Russia, USA, Japan, Czech Republic,Ukraine, Finland) Tracking detector: drift chamber (6180 Geiger cell) t = 5 mm, z = 1 cm ( vertex ) Calorimeter (1940 plastic scintillators– Low radioactive PMTs) Energy Resolution FWHM=14% (1 MeV) Shielding against gammas and neutrons Magnetic field for charge identification High radiopurity materials Identification e-,e+, Efficiency : 8% [2.7 – 3.2] MeV Running at Modane underground laboratory since 2003 Multi-source detector Unique feature: measurement of all kinematic parameters: individual energies and angular distribution Bckg sourcesthicknessmg/cm2) 82Se (0,93 kg) E1 event e- Vertex e- E1+E2= 2088 keV t= 0.22 ns (vertex) = 2.1 mm E2
10
NEMO3: bb(0n) results for 100Mo
Phase I, High radon 7.6 kg.yr Phase II, Low radon 5.7 kg.yr Phase I + II 13.3 kg.yr Number of events / 40 keV Number of events / 40 keV Number of events / 40 keV [ ] MeV: e(bb0n) = 8 % Expected bkg = 8.1 events Nobserved = 7 events [ ] MeV: e(bb0n) = 8 % Expected bkg = 3.0 events Nobserved = 4 events [ ] MeV: e(bb0n) = 8 % Expected bkg = 11.1 events Nobserved = 11 events Phases I + II T1/2(bb0n) > yr (90 % C.L.) <mn> < 0.6 – 1.3 eV T1/2(bb0n) > yr (90 % CL) <mn> < 0.3 –0.7 eV Expected in 2009
11
From NEMO-3 to SuperNEMO
NA M Tobs T1/2 () > ln 2 A N90 NEMO-3 SuperNEMO isotope 100Mo 150Nd or 82Se 7 kg kg isotope mass M 8 % efficiency ~ 30 % internal contaminations 208Tl and 214Bi in the foil 208Tl: < 20 Bq/kg 214Bi: < 300 Bq/kg 208Tl < Bq/kg if 82Se: 214Bi < 10 Bq/kg energy resolution (FWHM) 3MeV 3 MeV T1/2() > 2 x 1024 y <m> < 0.3 – 1.3 eV T1/2() > 2 x 1026 y <m> < meV
12
SuperNEMO Collaboration
~ 90 physicists, 12 countries, 27 laboratories Marocco Fes U Japan U Saga U Osaka USA MHC INL U Texas UK UCL U Manchester Imperial College Finland U Jyvaskula Poland U Warsaw Russia JINR Dubna ITEP Mosow Kurchatov Institute Ukraine INR Kiev ISMA Kharkov France CEN Bordeaux IReS Strasbourg LAL ORSAY LPC Caen LSCE Gif/Yvette Slovakia (U. Bratislava) Spain U Valencia U Saragossa U Barcelona Czech Republic Charles U Praha IEAP Praha
13
SuperNEMO project Tracko-calo with 100 kg of 82Se or 150Nd
(France, UK, Russia, Spain, USA, Japan, Czech Republic,Ukraine, Finland) Tracko-calo with 100 kg of 82Se or 150Nd (possibility to produce 150Nd with the French AVLIS facility ?) T½ > yr <mn> < 0.05 – 0.09 eV Modules based on the NEMO3 principle Measurements of energy sum, angular distribution and individual electron energy 3 years R&D program: improvement of energy resolution Increase of efficiency Background reduction ……. 100 kg 20 modules 2009: TDR 2011: commissioning and data taking of first modules in Canfranc (Spain) ? 2013: Full detector running in LSM ?
14
SuperNEMO Status - Large Scale R&D funded by France, UK and Spain
Possibility to produce 100 kg of 150Nd with laser enrichment method under study Test of tracker prototype and design of automatic winring robot Prototype of BiPo detector to measure contaminations in thin source foils with 1uBq/kg sensitivity running in Modane underground laboratory (France) 7% FWHM at 1 MeV reached for individual plastic and liquid scintillator samples. R&D towards bigger block sizes and large production scale underway - Simulations in progress
15
SuperNEMO: BiPo detector principle
Radiopurity measurement of 10m² of foils (40 mg/cm²) with sensitivity in a month : < 2 µBq/kg for 208Tl and < 10 µBq/kg for 214Bi - bulk contamination β α (164 µs) 238U 214Bi (19.9 mn) 210Tl (1.3 mn) 214Po 210Pb 22.3 y 0.021% (300 ns) 232Th 212Bi (60.5 mn) 208Tl (3.1 mn) 212Po 208Pb (stable) 36% Bi-Po effect 2 prototypes: BiPo1 and BiPo2 Japan involve in BiPo development based on the MOON experience MOON 1
16
Design of the optical guides by MC & test bench
SuperNEMO: BiPo II detector e α Design of the optical guides by MC & test bench At every step, extreme precaution with the radiopurity of the processes and the materials. /15 2. BiPo II Proto 3. Prel. study DAQ 4. Future sch.
17
SuperNEMO: BiPo II detector
BiPo 1 running in Laboratoire Souterrain de Modane (Fréjus) BiPo2 in test In LAL Orsay, in LSM in few weeks
18
DCBA R&D
19
DCBA R&D
20
DCBA R&D
21
Summary Previous activities: - NEMO 3 analysis of 48Ca
- Radon detector (sensitivity 1 mBq/m3) - Energy resolution measurement of scintillator plates at CENBG - Test of vertex localisation with MOON prototype in Osaka - Test of BiPo2 in LAL Orsay and installation of BiPo 1 in LSM - Low radioactive techniques On-going activities: - NEMO 3 analysis -bb sources - Calorimeter R&D: Energy resolution improvements and electronics - BiPo contruction, running and analysis
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.