Download presentation
Presentation is loading. Please wait.
1
Quantum Mechanics of Angular Momentum
Classical Angular Momentum Quantum Mechanical Angular Momentum Spherical Polar Coordinates Ladder Operators Eigenvalues / Eigenfunctions Spherical Harmonics Legendre Polynomials /Associated Legendre functions Rigid Rotator
2
Classical Angular Momentum
p r
3
Quantum Mechanical Angular Momentum
4
Commutation Properties
5
Commutation Properties
6
Commutation Properties
7
Quantum Mechanical Angular Momentum
Can measure one component and magnitude simultaneously
8
Spherical Polar Coordinates
9
Spherical Polar Coordinates
Chain rule
10
Spherical Polar Coordinates
11
Spherical Polar Coordinates
Do not depend on r
12
Ladder Operators
13
Ladder Operators Produces new eigenfunction with eigenvalue
Step-up operator Produces new eigenfunction with eigenvalue Step-down operator
14
Ladder Operators commute
15
Eigenvalues/Eigenfunctions
16
Eigenvalues/Eigenfunctions
For a given a there is a max and min b
17
Eigenvalues/Eigenfunctions
Eigenvalues of Lz are symmetric about 0 ^ n even n odd Not physically meaningful
18
Spherical Harmonics Find eigenfunctions same way as for Harmonic Oscillator
19
Legendre Polynomials /Associated Legendre functions
20
Legendre Polynomials /Associated Legendre functions
21
Legendre Polynomials /Associated Legendre functions
22
Spherical Harmonics
23
Rigid Rotator m1 m2 R r1 r2 Eigenfunctions are spherical harmonics
24
Rigid Rotator
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.