Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 9: Phase Diagrams

Similar presentations


Presentation on theme: "Chapter 9: Phase Diagrams"— Presentation transcript:

1 Chapter 9: Phase Diagrams
ISSUES TO ADDRESS... • When we combine two elements... what equilibrium state do we get? • In particular, if we specify... --a composition (e.g., wt% Cu - wt% Ni), and --a temperature (T ) then... How many phases do we get? What is the composition of each phase? How much of each phase do we get? Phase B Phase A Nickel atom Copper atom

2 Phase Equilibria: Solubility Limit
Introduction Solutions – solid solutions, single phase Mixtures – more than one phase Adapted from Fig. 9.1, Callister 7e. Sucrose/Water Phase Diagram Pure Sugar Temperature (°C) 20 40 60 80 100 Co =Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit (liquid) + S (solid sugar) 4 6 8 10 Water • Solubility Limit: Max concentration for which only a single phase solution occurs. Question: What is the solubility limit at 20°C? 65 Answer: 65 wt% sugar. If Co < 65 wt% sugar: syrup If Co > 65 wt% sugar: syrup + sugar.

3 Components and Phases • Components: • Phases: b (lighter phase) a
The elements or compounds which are present in the mixture (e.g., Al and Cu) • Phases: The physically and chemically distinct material regions that result (e.g., a and b). Aluminum- Copper Alloy b (lighter phase) a (darker phase) Adapted from chapter-opening photograph, Chapter 9, Callister 3e.

4 Effect of T & Composition (Co)
• Changing T can change # of phases: path A to B. Changing Co can change # of phases: path B to D. B (100°C,70) 1 phase D (100°C,90) 2 phases 70 80 100 60 40 20 Temperature (°C) Co =Composition (wt% sugar) L ( liquid solution i.e., syrup) (liquid) + S (solid sugar) water- sugar system A (20°C,70) 2 phases Adapted from Fig. 9.1, Callister 7e.

5 Phase Equilibria Simple solution system (e.g., Ni-Cu solution) Crystal
Structure electroneg r (nm) Ni FCC 1.9 0.1246 Cu 1.8 0.1278 Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility. Ni and Cu are totally miscible in all proportions.

6 Phase Diagrams • Indicate phases as function of T, Co, and P.
• For this course: -binary systems: just 2 components. -independent variables: T and Co (P = 1 atm is almost always used). • 2 phases: L (liquid) a (FCC solid solution) • 3 phase fields: L + wt% Ni 20 40 60 80 100 1000 1100 1200 1300 1400 1500 1600 T(°C) L (liquid) (FCC solid solution) + liquidus solidus • Phase Diagram for Cu-Ni system Adapted from Fig. 9.3(a), Callister 7e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

7 Phase Diagrams: # and types of phases
• Rule 1: If we know T and Co, then we know: --the # and types of phases present. wt% Ni 20 40 60 80 100 1000 1100 1200 1300 1400 1500 1600 T(°C) L (liquid) a (FCC solid solution) L + liquidus solidus Cu-Ni phase diagram • Examples: A(1100°C, 60): 1 phase: a B (1250°C,35) B (1250°C, 35): 2 phases: L + a Adapted from Fig. 9.3(a), Callister 7e. (Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991). A(1100°C,60)

8 Phase Diagrams: composition of phases
• Rule 2: If we know T and Co, then we know: --the composition of each phase. wt% Ni 20 1200 1300 T(°C) L (liquid) a (solid) L + liquidus solidus 30 40 50 Cu-Ni system • Examples: T A C o = 35 wt% Ni tie line 35 C o At T A = 1320°C: Only Liquid (L) C L = C o ( = 35 wt% Ni) B T 32 C L 4 C a 3 At T D = 1190°C: D T Only Solid ( a ) C = C o ( = 35 wt% Ni At T B = 1250°C: Both a and L Adapted from Fig. 9.3(b), Callister 7e. (Fig. 9.3(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.) C L = C liquidus ( = 32 wt% Ni here) C a = C solidus ( = 43 wt% Ni here)

9 Phase Diagrams: weight fractions of phases
• Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). wt% Ni 20 1200 1300 T(°C) L (liquid) a (solid) L + liquidus solidus 3 4 5 Cu-Ni system T A 35 C o 32 B D tie line R S • Examples: C o = 35 wt% Ni At T A : Only Liquid (L) W L = 100 wt%, W a = 0 At T D : Only Solid ( a ) W L = 0, W = 100 wt% At T B : Both a and L = 27 wt% WL = S R + Wa Adapted from Fig. 9.3(b), Callister 7e. (Fig. 9.3(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

10 The Lever Rule Tie line – connects the phases in equilibrium with each other - essentially an isotherm wt% Ni 20 1200 1300 T(°C) L (liquid) a (solid) L + liquidus solidus 3 4 5 B T tie line C o S R How much of each phase? Think of it as a lever (teeter-totter) ML M R S Adapted from Fig. 9.3(b), Callister 7e.

11 Ex: Cooling in a Cu-Ni Binary
• Phase diagram: Cu-Ni system. wt% Ni 20 120 130 3 4 5 110 L (liquid) a (solid) L + T(°C) A 35 C o L: 35wt%Ni Cu-Ni system • System is: --binary i.e., 2 components: Cu and Ni. --isomorphous i.e., complete solubility of one component in another; a phase field extends from 0 to 100 wt% Ni. a: 46 wt% Ni L: 35 wt% Ni B 46 35 C 43 32 a : 43 wt% Ni L: 32 wt% Ni D 24 36 L: 24 wt% Ni a : 36 wt% Ni E • Consider Co = 35 wt%Ni. Adapted from Fig. 9.4, Callister 7e.

12 Cored vs Equilibrium Phases
• Ca changes as we solidify. • Cu-Ni case: First a to solidify has Ca = 46 wt% Ni. Last a to solidify has Ca = 35 wt% Ni. • Fast rate of cooling: Cored structure • Slow rate of cooling: Equilibrium structure First a to solidify: 46 wt% Ni Uniform C : 35 wt% Ni Last < 35 wt% Ni

13 Mechanical Properties: Cu-Ni System
• Effect of solid solution strengthening on: --Tensile strength (TS) --Ductility (%EL,%AR) Tensile Strength (MPa) Composition, wt% Ni Cu Ni 20 40 60 80 100 200 300 400 TS for pure Ni TS for pure Cu Elongation (%EL) Composition, wt% Ni Cu Ni 20 40 60 80 100 30 50 %EL for pure Ni for pure Cu Adapted from Fig. 9.6(a), Callister 7e. Adapted from Fig. 9.6(b), Callister 7e. --Peak as a function of Co --Min. as a function of Co

14 Binary-Eutectic Systems
has a special composition with a min. melting T. 2 components Cu-Ag system T(°C) Ex.: Cu-Ag system 1200 • 3 single phase regions L (liquid) (L, a, b ) 1000 • Limited solubility: a L + a L + b 800 779°C b a TE : mostly Cu 8.0 71.9 91.2 b : mostly Ag 600 • TE : No liquid below TE a + b • CE : Min. melting TE 400 composition 200 20 40 60 CE 80 100 • Eutectic transition L(CE) (CE) + (CE) Co , wt% Ag Adapted from Fig. 9.7, Callister 7e.

15 EX: Pb-Sn Eutectic System (1)
• For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find... --the phases present: a + b Pb-Sn system --compositions of phases: L + a b 200 T(°C) 18.3 C, wt% Sn 20 60 80 100 300 L (liquid) 183°C 61.9 97.8 CO = 40 wt% Sn Ca = 11 wt% Sn Cb = 99 wt% Sn --the relative amount of each phase: W a = C - CO C - C 59 88 = 67 wt% S R+S 150 R 11 C 40 Co S 99 C W = CO - C C - C R R+S 29 88 = 33 wt% Adapted from Fig. 9.8, Callister 7e.

16 EX: Pb-Sn Eutectic System (2)
• For a 40 wt% Sn-60 wt% Pb alloy at 200°C, find... --the phases present: a + L Pb-Sn system --compositions of phases: L + b a 200 T(°C) C, wt% Sn 20 60 80 100 300 L (liquid) 183°C CO = 40 wt% Sn Ca = 17 wt% Sn CL = 46 wt% Sn --the relative amount of each phase: 220 17 C R 40 Co S 46 CL W a = CL - CO CL - C 6 29 = 21 wt% W L = CO - C CL - C 23 29 = 79 wt% Adapted from Fig. 9.8, Callister 7e.

17 Microstructures in Eutectic Systems: I
• Co < 2 wt% Sn • Result: --at extreme ends --polycrystal of a grains i.e., only one solid phase. L + a 200 T(°C) Co , wt% Sn 10 2 20 300 100 30 b 400 (room T solubility limit) TE (Pb-Sn System) L: Co wt% Sn a L a: Co wt% Sn Adapted from Fig. 9.11, Callister 7e.

18 Microstructures in Eutectic Systems: II
L: Co wt% Sn • 2 wt% Sn < Co < 18.3 wt% Sn • Result: Initially liquid +  then  alone finally two phases a polycrystal fine -phase inclusions Pb-Sn system L + a 200 T(°C) Co , wt% Sn 10 18.3 20 300 100 30 b 400 (sol. limit at TE) TE 2 (sol. limit at T room ) L a a: Co wt% Sn a b Adapted from Fig. 9.12, Callister 7e.

19 Microstructures in Eutectic Systems: III
• Co = CE • Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of a and b crystals. Adapted from Fig. 9.14, Callister 7e. 160 m Micrograph of Pb-Sn eutectic microstructure Pb-Sn system L a 200 T(°C) C, wt% Sn 20 60 80 100 300 L a b + 183°C 40 TE L: Co wt% Sn CE 61.9 18.3 : 18.3 wt%Sn 97.8 : 97.8 wt% Sn Adapted from Fig. 9.13, Callister 7e.

20 Lamellar Eutectic Structure
Adapted from Figs & 9.15, Callister 7e.

21 Microstructures in Eutectic Systems: IV
• wt% Sn < Co < 61.9 wt% Sn • Result: a crystals and a eutectic microstructure WL = (1- W a ) = 50 wt% C = 18.3 wt% Sn CL = 61.9 wt% Sn S R + = • Just above TE : Adapted from Fig. 9.16, Callister 7e. Pb-Sn system L + b 200 T(°C) Co, wt% Sn 20 60 80 100 300 a 40 TE L: Co wt% Sn L a L a 18.3 61.9 S R 97.8 S R primary a eutectic b • Just below TE : C a = 18.3 wt% Sn b = 97.8 wt% Sn S R + W = = 73 wt% = 27 wt%

22 Hypoeutectic & Hypereutectic
300 L T(°C) Adapted from Fig. 9.8, Callister 7e. (Fig. 9.8 adapted from Binary Phase Diagrams, 2nd ed., Vol. 3, T.B. Massalski (Editor-in-Chief), ASM International, Materials Park, OH, 1990.) L + a a b 200 L + b (Pb-Sn TE System) a + b 100 (Figs and 9.17 from Metals Handbook, 9th ed., Vol. 9, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985.) 175 mm a hypoeutectic: Co = 50 wt% Sn Adapted from Fig. 9.17, Callister 7e. hypereutectic: (illustration only) b Adapted from Fig. 9.17, Callister 7e. (Illustration only) Co, wt% Sn 20 40 60 80 100 eutectic 61.9 eutectic: Co = 61.9 wt% Sn 160 mm eutectic micro-constituent Adapted from Fig. 9.14, Callister 7e.

23 Intermetallic Compounds
Adapted from Fig. 9.20, Callister 7e. Mg2Pb Note: intermetallic compound forms a line - not an area - because stoichiometry (i.e. composition) is exact.

24 Eutectoid & Peritectic
Eutectic - liquid in equilibrium with two solids L  +  cool heat intermetallic compound - cementite cool heat Eutectoid - solid phase in equation with two solid phases S S1+S3   + Fe3C (727ºC) cool heat Peritectic - liquid + solid 1  solid 2 (Fig 9.21) S1 + L S2  + L  (1493ºC)

25 Eutectoid & Peritectic
Peritectic transition  + L  Cu-Zn Phase diagram Eutectoid transition   +  Adapted from Fig. 9.21, Callister 7e.

26 Iron-Carbon (Fe-C) Phase Diagram
• 2 important Adapted from Fig. 9.24,Callister 7e. Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a + L+Fe3C d (Fe) Co, wt% C 1148°C T(°C) 727°C = T eutectoid points -Eutectic (A): L Þ g + Fe3C A S R 4.30 -Eutectoid (B): g Þ a + Fe3C g Result: Pearlite = alternating layers of a and Fe3C phases 120 mm (Adapted from Fig. 9.27, Callister 7e.) 0.76 C eutectoid B R S Fe3C (cementite-hard) a (ferrite-soft)

27 Hypoeutectoid Steel T(°C) d L +L g (austenite) Fe3C (cementite) a
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L + Fe3C a L+Fe3C d (Fe) Co , wt% C 1148°C T(°C) 727°C (Fe-C System) C0 0.76 g g Adapted from Figs and 9.29,Callister 7e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) r s w a = /( + ) g (1- Adapted from Fig. 9.30,Callister 7e. proeutectoid ferrite pearlite 100 mm Hypoeutectoid steel R S a w = /( + ) Fe3C (1- g

28 Hypereutectoid Steel Fe3C (cementite) L g (austenite) +L a d T(°C) g g
1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a L+Fe3C d (Fe) Co , wt%C 1148°C T(°C) (Fe-C System) g g Adapted from Figs and 9.32,Callister 7e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) s r w Fe3C = /( + ) g =(1- Adapted from Fig. 9.33,Callister 7e. proeutectoid Fe3C 60 mm Hypereutectoid steel pearlite R S w a = /( + ) Fe3C (1- g Co 0.76

29 Example: Phase Equilibria
For a 99.6 wt% Fe-0.40 wt% C at a temperature just below the eutectoid, determine the following composition of Fe3C and ferrite () the amount of carbide (cementite) in grams that forms per 100 g of steel the amount of pearlite and proeutectoid ferrite ()

30 Chapter 9 – Phase Equilibria
Solution: a) composition of Fe3C and ferrite () the amount of carbide (cementite) in grams that forms per 100 g of steel CO = 0.40 wt% C Ca = wt% C CFe C = 6.70 wt% C 3 Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L + Fe3C a L+Fe3C d Co , wt% C 1148°C T(°C) 727°C CO R S CFe C 3 C

31 Chapter 9 – Phase Equilibria
the amount of pearlite and proeutectoid ferrite () note: amount of pearlite = amount of g just above TE Co = 0.40 wt% C Ca = wt% C Cpearlite = C = 0.76 wt% C Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L + Fe3C a L+Fe3C d Co , wt% C 1148°C T(°C) 727°C CO R S C C pearlite = 51.2 g proeutectoid  = 48.8 g

32 Alloying Steel with More Elements
• Teutectoid changes: • Ceutectoid changes: Adapted from Fig. 9.34,Callister 7e. (Fig from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) Adapted from Fig. 9.35,Callister 7e. (Fig from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.) T Eutectoid (°C) wt. % of alloying elements Ti Ni Mo Si W Cr Mn C eutectoid (wt%C)

33 Summary • Phase diagrams are useful tools to determine:
--the number and types of phases, --the wt% of each phase, --and the composition of each phase for a given T and composition of the system. • Alloying to produce a solid solution usually --increases the tensile strength (TS) --decreases the ductility. • Binary eutectics and binary eutectoids allow for a range of microstructures.

34 ANNOUNCEMENTS Reading: Core Problems: Self-help Problems:


Download ppt "Chapter 9: Phase Diagrams"

Similar presentations


Ads by Google