Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trigonometric Functions

Similar presentations


Presentation on theme: "Trigonometric Functions"β€” Presentation transcript:

1 Trigonometric Functions
TANGENT, SINE, COSINE

2 TANGENT - Definition Tangent of an acute angle is the ratio of the length of the leg opposite the angle to the length of the leg adjacent to the angle. Tangent ratio is formed by the legs of a right triangle Written as tanA tan 𝐴= π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ 𝑙𝑒𝑔 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘Žπ‘›π‘”π‘™π‘’ 𝐴 π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ 𝑙𝑒𝑔 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ 𝐴 = π‘Ž 𝑏 Tangent ratio is constant for a given angle A C B a b c

3 TANGENT - Examples Find the tangent of angle J.
Find the tangent of angle K. tan 𝐾= =0.417 K L J 10 24 26

4 SINE - Definition Sine of an acute angle is the ratio of the length of the leg opposite the angle to the length of the hypotenuse of the right triangle. Sine ratio is formed by a leg and the hypotenuse of a right triangle Written as sinA sin 𝐴= π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ 𝑙𝑒𝑔 π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘Žπ‘›π‘”π‘™π‘’ 𝐴 π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ = π‘Ž 𝑐 Sine ratio is constant for a given angle A C B a b c

5 SINE - Examples Find the sine of angle J. Find the sine of angle K.
10 24 26

6 COSINE - Definition Cosine of an acute angle is the ratio of the length of the leg adjacent to the angle to the length of the hypotenuse of the right triangle. Cosine ratio is formed by a leg and the hypotenuse of a right triangle Written as cosA cos 𝐴= π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ 𝑙𝑒𝑔 π‘Žπ‘‘π‘—π‘Žπ‘π‘’π‘›π‘‘ π‘‘π‘œ π‘Žπ‘›π‘”π‘™π‘’ 𝐴 π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’ = 𝑏 𝑐 Cosine ratio is constant for a given angle A C B a b c

7 COSINE - Examples Find the cosine of angle J.
Find the cosine of angle K. cos 𝐾 = =0.923 K L J 10 24 26

8 SOH CAH TOA Sine Hypotenuse Cosine Hypotenuse Tangent Adjacent
Opposite Adjacent Opposite sin= 𝑂𝑃𝑃𝑂𝑆𝐼𝑇𝐸 π»π‘Œπ‘ƒπ‘‚π‘‡πΈπ‘π‘ˆπ‘†πΈ cos = 𝐴𝐷𝐽𝐴𝐢𝐸𝑁𝑇 π»π‘Œπ‘ƒπ‘‚π‘‡πΈπ‘π‘ˆπ‘†πΈ tan = 𝑂𝑃𝑃𝑂𝑆𝐼𝑇𝐸 𝐴𝐷𝐽𝐴𝐢𝐸𝑁𝑇


Download ppt "Trigonometric Functions"

Similar presentations


Ads by Google