Download presentation
Presentation is loading. Please wait.
1
Key output and findings D.K. & B.L.
CATPAC & LIWC Key output and findings D.K. & B.L.
2
How CATPAC is Used Reads text to identify most important words
Can determine patterns of similarity Produces simple frequency counts The neural network is self-organizing Finds patterns of usage between words Uses clustering algorithms Produces perceptual maps
3
CATPAC frequencies TOTAL WORDS 300 THRESHOLD 0.000
TOTAL UNIQUE WORDS RESTORING FORCE TOTAL EPISODES CYCLES TOTAL LINES FUNCTION Sigmoid ( ) CLAMPING Yes DESCENDING FREQUENCY LIST ALPHABETICALLY SORTED LIST CASE CASE CASE CASE WORD FREQ PCNT FREQ PCNT WORD FREQ PCNT FREQ PCNT I A A ABOUT MY ALL I'M AM FOR BE AM CAN BE FOR YOU HAVE OUT I KNOW I'M HAVE KNOW ME LIFE ON LOVE SOMEONE ME WITH MY LIFE NO LOVE NOT NOT ON SHOULD OUT SO SHOULD ABOUT SO ALL SOMEONE CAN WHAT NO WITH WHAT YOU CATPAC frequencies
4
Dendogram output WARDS METHOD
A M H Y I N I A O S S W A N K W A M C L B S F L O . Y A O ' O . B U O O I L O N H M E A O E H O I N . . V U M T . O T . M T L . O A . . N V . O R F . . . E U . . E H . . W T E . U . E . T . . O L . . . N D . . . E ^^^ ^^^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^ . . . ^^^^^^^^^^^^^ ^^^ . ^^^ ^^^^^^^^^^^^^ ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ ^^^ ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ ^^^ ^^^ ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ ^^^ ^^^ ^^^ ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ ^^^ ^^^ ^^^ ^^^ . . ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^ . ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Dendogram output
5
CATPAC 3-D Perceptual Map
6
Operating Issues with CATPAC
Exclude dictionary: must amend the default and save or create in correct format Text input: separating multiple texts requires insertion of a slide barrier Refining the exclude list and analysis settings can be a long, incremental process The 3-D visualizing is cluttered for larger numbers of terms
7
Linguistic Inquiry and Word Count
Provide an effective method for studying emotional/cognitive/structural/process components present in individuals’ verbal and written speech Calculates % of words that match of up to 84 dimensions Generates an output that is readable by SPSS or Excel
8
LIWC / output variables
Text files, once formatted for entry, are processed for up to 84 output variables, including: 17 standard linguistic dimensions (e.g., word count, percentage of pronouns, articles) 25 word categories tapping psychological constructs (e.g., affect, cognition) 10 dimensions related to "relativity" (time, space, motion) 19 personal concern categories (e.g., work, home, leisure activities)
9
LIWC / How to… For best results -> prepare text for analysis (adjust misspellings, inappropriate words, abbreviations) Adjusting words can be tricky… e.g.: US -> U.S. Sometimes used to analyze oral conversations/interviews -> transcribe speech to text -> dictionary includes some “nonfluencies” (e.g.: hm, uh, huh, um) Analyzes data one file at a time Files: TEXT or ASCII format! Can’t read word document The longer the document, the better
10
LIWC / dictionaries Only counts words that are in the dictionaries
default dictionary: Internal Pennebaker Dictionary -> 2300 words But you can develop your own dictionary! To create dictionary: choose “load new dictionary” from the “dictionary” menu Dictionaries have to be plain text files
11
LIWC output with standard linguistic dimensions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.