Download presentation
Presentation is loading. Please wait.
1
Star-Massive Black Holes Encounters
J.-P.Luminet Observatoire de Paris (LUTH) Tidal Disruption Events Esa, Madrid 2012
2
Supermassive black holes (M > 106 MS) in active galactic nuclei
quasars radiogalaxies Supermassive black holes (M > 106 MS) in active galactic nuclei Seyfert 2
3
Massive black holes (M > 106 MS) in quiescent galactic nuclei
Sagittarius A* 2,7 106 MS < M < 3,5 106 MS)
4
Intermediate mass black holes (103 < M < 106 MS)
in globular clusters M15 4000 MS G1/M31 MS
5
The « octopus » model for AGN
Luminet (1986)
6
BH’s gravitational radius
Characteristic distances Accretion radius Collision radius Hills limit 108 MO Ablation radius Tidal radius BH’s gravitational radius 6
7
Tidal field = relative acceleration between elements of matter
Newtonian tidal field Tidal field = relative acceleration between elements of matter tidal potential tidal tensor deviation tensor
8
(planet-satellite couple in circular orbit)
• For incompressible homogeneous bodies • static field (planet-satellite couple in circular orbit) Edouard Roche Roche limit (1847)
9
• incompressible bodies in dynamical field
(asteroid-black hole encounter in parabolic orbit) Luminet & Carter (1986) Kostic et al. (2009) Cigar-like regime Disk-like regime 0.16 RT ≤ Rp ≤ RT Rp ≤ RT
10
Luminet et al. 1982-1986 : « affine » model
• compressible bodies in dynamical field (star-black hole encounter in parabolic orbit) Luminet et al : « affine » model Non-disruptive regime Oscillating Riemann ellipsoid => variable star ?
11
From equilibrium to stellar disruption
Compare : timescale of varying tidal field / internal timescale of the star Far from the tidal radius : Star adjusts its equilibium configuration Close to and inside the tidal radius : Pionneer work : Hills, 1975 ; Frank & Rees, 1976 Strongly dynamical tidal field => Star cannot respond
12
the penetration factor
Parabolic orbit Crucial parameter : the penetration factor Carter & Luminet (Nature, 1982) Tidal radius Black hole RP RT
13
Slight penetration (b ~ 1) in the tidal radius
Disruption process in the ellipsoidal model (Luminet & Carter, 1986) « cigar-like » configuration after leaving the tidal radius
14
Disruption process reproduced by hydrodynamical simulations
Slight penetration in the tidal radius Disruption process reproduced by hydrodynamical simulations Ejected matter « cigar-like » configuration after leaving the tidal radius « S-like » configuration at the periastron
15
Lidskii & Ozernoy (1979), Rees (1988)
Accretion of stellar debris (50%) Tidal Flares Lidskii & Ozernoy (1979), Rees (1988) Tidal radius Massive black hole
16
UV flare in NGC 4252 (Renzini et al. 1995)
X-ray flare in RXJ (Komossa & Greiner, 1999) UV flare in NGC 4252 (Renzini et al. 1995)
17
Giant X-UV luminous flares
Detection (ROSAT, Chandra, Galex…) of X-UV flares from (non active) galactic nuclei
18
X-UV-optical luminous flares
Detection (Chandra, Galex, Pan-starrs…) of flares from (non active) galactic nuclei (Komossa et al., Saxton et al. , Esquej et al., Gezari et al., etc.) « Relativistic » Tidal Flares Detection (Swift) of hard-X flares (Lx ~1047 ergs) (Zauderer et al. 2011, Cenko et al. 2012) Relativistic jets from tidal ejecta ?
19
(Carter & Luminet, Nature, 1982)
The Pancake Effect (Carter & Luminet, Nature, 1982) Fixed compressive principal direction of the tidal tensor in the « vertical » direction ==> For deep penetration ( > 3)
20
The « Rolling Mill » Effect
Cartoon version fixed compressive point after periastron But relativistc velocity at periastron => almost instantenous flattening
21
Disruption process in the ellipsoidal model (Luminet & Carter, 1986)
Deep penetration (b > 3) in the tidal radius Disruption process in the ellipsoidal model (Luminet & Carter, 1986)
22
Explosive stellar disruption ?
Compression and heating strongly dependent from the penetration factor Maximum values for an ideal gas with polytropic index 5/3 : Conditions required for explosive thermonuclear reactions
23
Detonation of metals (C, N, O, …) by radiative proton captures (Luminet & Pichon 1989)
Helium detonation by triple alpha (Pichon 1985)
24
Tidally induced supernovae?
Luminet, 1986 Rosswog et al., 2008 A special type of GRB ? Carter, 1992 Lu et al. 2008; Gao et al. 2011
25
The pancake triangle (solar type stars)
Star enters the Black hole Black hole enters the star 107 K 108 K 109 K log ( No disruption log(M•/M*)
26
Shock waves in stellar pancakes
(Brassart & Luminet, )
27
Problematics Stellar pancakes calculated in the affine model (Luminet et al ) ==> Elliptical deformations of the star • Stellar pancakes calculated by 3D hydro (Bicknell & Gingold 1983; Laguna et al. 1993; Fulbright 1996) ==> SPH method (uses artificial viscosity to simulate shock waves) N.B. : Generalized affine model (Ivanov et al )
28
Due to shock waves occuring during the phase of vertical direction ??
Disagreement : compression of the stellar core less than in the affine model: max ~ 1.5 for < 10 max ~ const for > 10 Due to shock waves occuring during the phase of vertical direction ?? Or bad treatment (SPH) of shock waves ?
29
New Hydrodynamical Model Euler eqs. + Godunov methods
1D approximation valid from the tidal radius to periastron Principal axes of the tidal tensor
30
= 7 velocity Phase1: collapse Tidal radius periastron
max.compression Phase1: collapse
31
= 7 velocity Phase 2: bounce max.compression Subsonic expansion
Subsonic collapse Supersonic collapse Subsonic expansion
32
collapse Shock = 7 density (after bounce) Tidal radius periastron
max.compression and bounce Shock (after bounce)
33
= 7 temperature shock
35
= 15 shock 1 (before bounce) velocity shock 2 (after bounce)
36
= 15 shock 1 (before bounce) density shock 2 (after bounce)
38
maximum central density
maximum central temperature
39
Shock-driven maximum temperature
= 10 Shock-driven maximum temperature
40
Number of disruption events:
Wang & Merritt (2004), Tal (2005) BH binaries : Chen et al (2009) UV/X/gamma-ray flares
41
Modelisation of Gamma-Ray Bursts
jet Long GRB Short GRB 41
42
• g-ray transients Swift J1644+57 and Swift J2058+05 (Zauderer 2011, Cenko 2012)
interpreted as a relativistic outflow from transient accretion onto a 106 Ms black hole • GRB (long ~100 s) without SN remnant : disruption of a WD by an intermediate mass BH ? (Lu et al. 2008) • A new class of g-ray bursts from stellar disruptions by IMBH ? (Gao et al., 2010) From a total of 328 Swift GRBs with accurate measured durations and without SN association, 25 GRBs satisfying the criteria for GRB type bursts…
43
Relativistic tidal field
Luminet & Marck, 1985 E = specific total energy L = specific angular momentum for parabolic orbits : E = 1
44
Precession effect : self-crossing orbit
45
Double point inside the tidal radius:
Luminet & Marck, 1985
46
Double point inside the tidal radius
Brassart & Luminet, 2011 Double point inside the tidal radius Several compressions
47
Multi-pancake effect and X/ bursts
• Multi-peak structure and timescales compatible with GRB (and others ?)
48
Recent hydro models … • 3D simulations coupling hydrodynamics and nuclear network (Guillochon et al., 2011): Confirm the occurrence of tidally induced supernovae • Red giants / BH interactions (Mac Leod et al., 2012): Tidal stripping of atmosphere • White dwarfs / IM BH strong encounters (Rosswog et al. 2010, Hass et al. 2012): Confirm nuclear ignition (e.g. helium detonation)
49
Supermassive BH > 108 MS
Analogy with stellar collisions Around a 109 MS black hole, the typical collisional velocities are > 5000 km/s within a distance 0.1 pc from the black hole b = vcoll/v* crushing factor b = RT/Rp Massive BH ( MS) Supermassive BH > 108 MS Glob. Clusters, GN, Seyfert Quasars, Giant elliptical …
50
: disruption / : pancake effect
High velocity head-on collisions, polytropes 5/3 Barnes, 2003 Makino, 1999
51
The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.