Download presentation
Presentation is loading. Please wait.
1
Tracking muons in Panda(Root)
Stefano Spataro ISTITUTO NAZIONALE DI FISICA NUCLEARE Sezione di Torino
2
Overview Geometry Implementations MDT Pattern Recognition
Reconstruction for global PID In the next future
3
Geometry Implementations
4
Torino Design simplified geometry ArCo2 planes 2,5 cm thickness Barrel
(George Serbanut) simplified geometry ArCo2 planes 2,5 cm thickness PndMdt *Muo = new PndMdt("MDT",kTRUE): Muo->SetBarrel("torino"); Muo->SetEndcap("torino"); Muo->SetMuonFilter("torino"); fRun->AddModule(Muo); Barrel Encap Muon Filter
5
Dubna Design Barrel Encap Muon Filter Forward detailed geometry
(Valery Rodionov) PndMdt *Muo = new PndMdt("MDT",kTRUE); Muo->SetBarrel("muon_TS_barrel_v3_noGeo.root"); Muo->SetEndcap("muon_TS_endcap_noGeo.root"); Muo->SetForward("muon_Forward_noGeo.root"); Muo->SetMuonFilter("muon_MuonFilter_noGeo.root"); fRun->AddModule(Muo); Barrel Encap Muon Filter Forward detailed geometry
6
Full CAD conversion (Tobias Stockmanns)
Magnet Design Full CAD conversion (Tobias Stockmanns) FairModule *Magnet= new PndMagnet("MAGNET"); Magnet->SetGeometryFileName ("FullSolenoid_V842.root"); fRun->AddModule(Magnet); Coils CAD conversion (Tobias Stockmanns) FairModule *Magnet= new PndMagnet("MAGNET"); Magnet->SetGeometryFileName ("FullSuperconductingSolenoid_V831.root"); fRun->AddModule(Magnet); MDT Design - TDR (George Serbanut) PndMdt *Muo = new PndMdt("MDT",kTRUE); Muo->SetBarrel… Muo->SetMdtMagnet(kTRUE); Muo->SetMdtMFIron(kTRUE); fRun->AddModule(Muo);
7
some overlaps still present sometimes the analysis can crash
Magnet Design CAD conversion files some overlaps still present sometimes the analysis can crash for the moment is it safer to use MDT version MDT Design 10 @3GeV/c Barrel Endcap Muon Filter Forward CPU Time Torino 3 sec Dubna 3 min Dubna Endcap does not follow TDR (overlaps with yoke) Dubna geometry not optimized
8
MDT Pattern Recognition
9
Detector Setup GEANT3 MVD TPC TOF DIRC EMC GEM MDT (Torino) COILS (CAD) YOKE (MDT) DISC PIPE
10
MdtHit Energy Loss > 0
Simulation Setup GEANT3 // MDT hit producers PndMdtHitProducerIdeal* mdtHitProd = new PndMdtHitProducerIdeal(); mdtHitProd->SetPositionSmearing(0.3); // position smearing [cm] fRun->AddTask(mdtHitProd); PndMdtTrkProducer* mdtTrkProd = new PndMdtTrkProducer(); mdtTrkProd->SetVerbose(10); fRun->AddTask(mdtTrkProd); MdtHit Energy Loss > 0 MdtHit Position Smearing 0.3 cm -> 1 cm bar
11
MdtHit from inner layer
Pattern Recognition MdtHit from inner layer one tracklet PndMdtTrk closest hit in next layer in a search cone and so on… and so on… Enccap and Muon Filter threated as single module
12
MdtHitTrk Information
Pattern Recognition MdtHitTrk Information Mdt Module (barrel/EC/hybrid) Number of fired layers Maximum fired layer Number of hits inside search cone for each layer Index of the closest MdtHit Number of hits inside search cone Distance from hit in previous layer Layer distance
13
Geometry Parametrization
Layer Position recognised from geometry Independent from Torino/Dubna design Barrel Endcap+MF TORINO Torino -> Working Dubna -> Muon Filter missing Dubna -> Double Layer 0 (?)
14
Hybrid Pattern Recognition 5000 3 GeV/c [5°, 90°] HYBRID ENDCAP+MF
BARREL ENDCAP+MF HYBRID
15
@ 1 GeV/c @ 1 GeV/c Test Simulation Data 5000 events PID ,
P 1, 3 GeV/c [5°, 90°] [0°, 360°] EC BARREL @ 1 GeV/c EC BARREL Momentum Loss Vertex – MDT Layer 0 DISC is missing
16
Hit Distances Hit Distance Layer Distance 3 GeV/c
17
3 GeV/c BARREL ENDCAP+MF HYBRID BARREL ENDCAP+MF HYBRID
18
3 GeV/c hybrid barrel EC+MF secondaries
19
@ 3 GeV/c @ 3 GeV/c Hit Distances – 3 GeV/c BARREL ENDCAP+MF
HYBRID 3 GeV/c BARREL ENDCAP+MF HYBRID 3 GeV/c
20
Hit Multiplicities – 3 GeV/c
BARREL ENDCAP+MF HYBRID 3 GeV/c BARREL ENDCAP+MF HYBRID 3 GeV/c
21
Fired Layers – 3 GeV/c 3 GeV/c 3 GeV/c
22
Fired Layers – 3 GeV/c BARREL EC+MF HYBRID
log scale log scale log scale
23
@ 1 GeV/c @ 1 GeV/c Hit Distances – 1 GeV/c BARREL ENDCAP+MF
HYBRID 1 GeV/c BARREL ENDCAP+MF HYBRID 1 GeV/c
24
Hit Multiplicities – 1 GeV/c
BARREL ENDCAP+MF HYBRID 1 GeV/c BARREL ENDCAP+MF HYBRID GeV/c
25
Fired Layers – 1 GeV/c 1 GeV/c 1 GeV/c
26
Fired Layers – 1 GeV/c BARREL EC+MF HYBRID
log scale log scale log scale
27
Reconstruction for global PID
28
Track Propagation to MDT layers
MDT hit (layer 0) GEANE extrapolation LHE/genfit tracking
29
Extrapolation Residuals
ENDCAP + MF BARREL 3 GeV/c @ 3 GeV/c 1 GeV/c 3 GeV/c @ 3 GeV/c 1 GeV/c
30
3 GeV/c @ 3 GeV/c 1 GeV/c Barrel Propagation
31
Reconstruction of ’ J/ + - J/ + - MC ! MC
32
Jobs still to do Geometry Implementation – Some fixes required
Pattern Recognition working – Improvement needed PID Correlation – P dependent matching window Kalman with MDT hits
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.