Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tracking muons in Panda(Root)

Similar presentations


Presentation on theme: "Tracking muons in Panda(Root)"— Presentation transcript:

1 Tracking muons in Panda(Root)
Stefano Spataro ISTITUTO NAZIONALE DI FISICA NUCLEARE Sezione di Torino

2 Overview Geometry Implementations MDT Pattern Recognition
Reconstruction for global PID In the next future

3 Geometry Implementations

4 Torino Design simplified geometry ArCo2 planes 2,5 cm thickness Barrel
(George Serbanut) simplified geometry ArCo2 planes 2,5 cm thickness PndMdt *Muo = new PndMdt("MDT",kTRUE): Muo->SetBarrel("torino"); Muo->SetEndcap("torino"); Muo->SetMuonFilter("torino"); fRun->AddModule(Muo); Barrel Encap Muon Filter

5 Dubna Design Barrel Encap Muon Filter Forward detailed geometry
(Valery Rodionov) PndMdt *Muo = new PndMdt("MDT",kTRUE); Muo->SetBarrel("muon_TS_barrel_v3_noGeo.root"); Muo->SetEndcap("muon_TS_endcap_noGeo.root"); Muo->SetForward("muon_Forward_noGeo.root"); Muo->SetMuonFilter("muon_MuonFilter_noGeo.root"); fRun->AddModule(Muo); Barrel Encap Muon Filter Forward detailed geometry

6 Full CAD conversion (Tobias Stockmanns)
Magnet Design Full CAD conversion (Tobias Stockmanns) FairModule *Magnet= new PndMagnet("MAGNET"); Magnet->SetGeometryFileName ("FullSolenoid_V842.root"); fRun->AddModule(Magnet); Coils CAD conversion (Tobias Stockmanns) FairModule *Magnet= new PndMagnet("MAGNET"); Magnet->SetGeometryFileName ("FullSuperconductingSolenoid_V831.root"); fRun->AddModule(Magnet); MDT Design - TDR (George Serbanut) PndMdt *Muo = new PndMdt("MDT",kTRUE); Muo->SetBarrel… Muo->SetMdtMagnet(kTRUE); Muo->SetMdtMFIron(kTRUE); fRun->AddModule(Muo);

7 some overlaps still present sometimes the analysis can crash
Magnet Design CAD conversion files some overlaps still present sometimes the analysis can crash for the moment is it safer to use MDT version MDT Design 10  @3GeV/c Barrel Endcap Muon Filter Forward CPU Time Torino 3 sec Dubna 3 min Dubna Endcap does not follow TDR (overlaps with yoke) Dubna geometry not optimized

8 MDT Pattern Recognition

9 Detector Setup GEANT3 MVD TPC TOF DIRC EMC GEM MDT (Torino) COILS (CAD) YOKE (MDT) DISC PIPE

10 MdtHit Energy Loss > 0
Simulation Setup GEANT3 // MDT hit producers PndMdtHitProducerIdeal* mdtHitProd = new PndMdtHitProducerIdeal(); mdtHitProd->SetPositionSmearing(0.3); // position smearing [cm] fRun->AddTask(mdtHitProd); PndMdtTrkProducer* mdtTrkProd = new PndMdtTrkProducer(); mdtTrkProd->SetVerbose(10); fRun->AddTask(mdtTrkProd); MdtHit Energy Loss > 0 MdtHit Position Smearing 0.3 cm -> 1 cm bar

11 MdtHit from inner layer
Pattern Recognition MdtHit from inner layer one tracklet PndMdtTrk closest hit in next layer in a search cone and so on… and so on… Enccap and Muon Filter threated as single module

12 MdtHitTrk Information
Pattern Recognition MdtHitTrk Information Mdt Module (barrel/EC/hybrid) Number of fired layers Maximum fired layer Number of hits inside search cone for each layer Index of the closest MdtHit Number of hits inside search cone Distance from hit in previous layer Layer distance

13 Geometry Parametrization
Layer Position recognised from geometry Independent from Torino/Dubna design Barrel Endcap+MF TORINO Torino -> Working Dubna -> Muon Filter missing Dubna -> Double Layer 0 (?)

14 Hybrid Pattern Recognition 5000  3 GeV/c [5°, 90°] HYBRID ENDCAP+MF
BARREL ENDCAP+MF HYBRID

15  @ 1 GeV/c  @ 1 GeV/c Test Simulation Data 5000 events PID  , 
P  1, 3 GeV/c   [5°, 90°]   [0°, 360°] EC BARREL  @ 1 GeV/c EC BARREL Momentum Loss Vertex – MDT Layer 0 DISC is missing

16 Hit Distances Hit Distance Layer Distance 3 GeV/c

17 3 GeV/c BARREL ENDCAP+MF HYBRID BARREL ENDCAP+MF HYBRID

18 3 GeV/c hybrid barrel EC+MF secondaries

19  @ 3 GeV/c  @ 3 GeV/c Hit Distances – 3 GeV/c BARREL ENDCAP+MF
HYBRID 3 GeV/c BARREL ENDCAP+MF HYBRID 3 GeV/c

20 Hit Multiplicities – 3 GeV/c
BARREL ENDCAP+MF HYBRID 3 GeV/c BARREL ENDCAP+MF HYBRID 3 GeV/c

21 Fired Layers – 3 GeV/c 3 GeV/c 3 GeV/c

22 Fired Layers – 3 GeV/c             BARREL EC+MF HYBRID
log scale log scale log scale

23  @ 1 GeV/c  @ 1 GeV/c Hit Distances – 1 GeV/c BARREL ENDCAP+MF
HYBRID 1 GeV/c BARREL ENDCAP+MF HYBRID 1 GeV/c

24 Hit Multiplicities – 1 GeV/c
BARREL ENDCAP+MF HYBRID 1 GeV/c BARREL ENDCAP+MF HYBRID GeV/c

25 Fired Layers – 1 GeV/c 1 GeV/c 1 GeV/c

26 Fired Layers – 1 GeV/c             BARREL EC+MF HYBRID
log scale log scale log scale

27 Reconstruction for global PID

28 Track Propagation to MDT layers
MDT hit (layer 0) GEANE extrapolation LHE/genfit tracking

29 Extrapolation Residuals
ENDCAP + MF BARREL 3 GeV/c @ 3 GeV/c 1 GeV/c 3 GeV/c @ 3 GeV/c 1 GeV/c

30 3 GeV/c @ 3 GeV/c 1 GeV/c Barrel Propagation

31 Reconstruction of ’  J/ + - J/  + - MC  ! MC  

32 Jobs still to do Geometry Implementation – Some fixes required
Pattern Recognition working – Improvement needed PID Correlation – P dependent matching window Kalman with MDT hits


Download ppt "Tracking muons in Panda(Root)"

Similar presentations


Ads by Google