Download presentation
Presentation is loading. Please wait.
1
Sum it up Jeff Bivin -- LZHS
2
a1 = 1 r = 3 n = 6 Jeff Bivin -- LZHS
3
– a1 = 4 r = -2 n = 7 Jeff Bivin -- LZHS
4
Alternative Sum Formula
We know that: Multiply by r: Simplify: Substitute: Jeff Bivin -- LZHS
5
Find the sum of the geometric Series
Jeff Bivin -- LZHS
6
Find the sum of all the terms in the following GP. 10, 30, 90, ….7290
r = 3, n = ? an = 7290 Jeff Bivin -- LZHS
7
Find the sum of all the terms in the following GP. 4, 8, 16, ….2048
r = 2, n = ? an = 2048 Jeff Bivin -- LZHS
8
Evaluate = 2 + 4 + 8+…+1024 a1 = 2 r = 2 n = 10 an = 1024
Jeff Bivin -- LZHS
9
Evaluate = 3 + 6 + 12 +…+ 384 a1 = 3 r = 2 n = 8 an = 384
Jeff Bivin -- LZHS
10
an = a1·r(n-1) Review -- Geometric Sum of n terms nth term
Jeff Bivin -- LZHS
11
Geometric Infinite Series Jeff Bivin -- LZHS
12
The Magic Flea (magnified for easier viewing)
There is no flea like a Magic Flea Jeff Bivin -- LZHS
13
The Magic Flea (magnified for easier viewing)
Jeff Bivin -- LZHS
14
Sum it up -- Infinity Jeff Bivin -- LZHS
15
Remember --The Magic Flea
Jeff Bivin -- LZHS
16
Jeff Bivin -- LZHS
17
rebounds ½ of the distance from which it fell --
A Bouncing Ball rebounds ½ of the distance from which it fell -- What is the total vertical distance that the ball traveled before coming to rest if it fell from the top of a 128 feet tall building? 128 ft 64 ft 32 ft 16 ft 8 ft Jeff Bivin -- LZHS
18
A Bouncing Ball 128 ft 64 ft 32 ft 16 ft 8 ft Downward
= … 128 ft 64 ft 32 ft 16 ft 8 ft Jeff Bivin -- LZHS
19
A Bouncing Ball 128 ft 64 ft 32 ft 16 ft 8 ft Upward
= … 128 ft 64 ft 32 ft 16 ft 8 ft Jeff Bivin -- LZHS
20
A Bouncing Ball 128 ft 64 ft 32 ft 16 ft 8 ft
Downward = … = 256 Upward = … = 128 TOTAL = 384 ft. 128 ft 64 ft 32 ft 16 ft 8 ft Jeff Bivin -- LZHS
21
rebounds 3/5 of the distance from which it fell --
A Bouncing Ball rebounds 3/5 of the distance from which it fell -- What is the total vertical distance that the ball traveled before coming to rest if it fell from the top of a 625 feet tall building? 625 ft 375 ft 225 ft 135 ft 81 ft Jeff Bivin -- LZHS
22
A Bouncing Ball 625 ft 375 ft 225 ft 135 ft 81 ft Downward
= … 625 ft 375 ft 225 ft 135 ft 81 ft Jeff Bivin -- LZHS
23
A Bouncing Ball 625 ft 375 ft 225 ft 135 ft 81 ft Upward
= … 625 ft 375 ft 225 ft 135 ft 81 ft Jeff Bivin -- LZHS
24
A Bouncing Ball 625 ft 375 ft 225 ft 135 ft 81 ft
Downward = … = Upward = … = 937.5 TOTAL = 2500 ft. 625 ft 375 ft 225 ft 135 ft 81 ft Jeff Bivin -- LZHS
25
Find the sum of the series
Jeff Bivin -- LZHS
26
Fractions - Decimals Jeff Bivin -- LZHS
27
Let’s try again + + Jeff Bivin -- LZHS
28
One more subtract Jeff Bivin -- LZHS
29
OK now a series Jeff Bivin -- LZHS
30
.9 = 1 .9 = 1 That’s All Folks Jeff Bivin -- LZHS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.