Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elastic and inelastic diffraction

Similar presentations


Presentation on theme: "Elastic and inelastic diffraction"— Presentation transcript:

1 Elastic and inelastic diffraction
at the LHC Zimányi Winter School Budapest, December 1-5, 2014 László L. Jenkovszky

2 Plan III. VMP at the LHC (ULTRA-PERIPHERA COLLISIONS) II. INTRODUCTORY
1. Historical introduction; 2. Definition: Diffraction= a) Pomeron exchange; b) Rapgap; How many Pomerons? One (but complicated!); The Odderon; amplitudes and measurables; 3. Regge poles (t-channel) and geometrical (s-channal) models; 4. Unitarity, impact parameter, eikonal, U-matrix, gap survival; II. HADRON-INDUCED REACTIONS (FERMILAB, RHIC, LHC) 5. Elastic scattering, low=|t| structures, the dip-bump phenomenon, black disc limit; 6. Resonance-Regge duality, the background, two-component duality; 7. SDD, DDD, CED, factorization relations; 8. The pPX vertex and DIS (HERA), triple Regge limit; 9. Duality and FMSR; 10. Diffraction at the LHC: Pomeron (>95%) dominance; III. LEPTON-INDECED REACTIONS (HERA, JLAB,…) 11. Diffractive structure functions; 12. Diffractive vector meson production (VMP); III. VMP at the LHC (ULTRA-PERIPHERA COLLISIONS)

3 Diffraction in optics and in HEP

4 References P.D.B. Collins: An introduction to Regge poles
& HEP, Cambridge Univ. Press, 1977; S. Donnachie, G. Dosch, P. Landshoff, and O. Nachtmann: Pomeron physics and QCD; V. Barone and E. Predazzi: High-energy particle diffraction L. Jenkovszky (below)

5 Proton-proton collision Proto-antiproton collisions
Accelerators, energy ranges, years (sketch) Proton-proton collision P+O Serpukhov ISR (CERN) SPS (CERN) RHIC (BNL) Tevatron LHC (CERN) (1967) (1972) (1980) (1990) (1985) (2010) Years E (GeV) P-O Proto-antiproton collisions Р-Pomeron; О-odderon

6

7 free states only (not to quarks and gluons)!
α(0)\C + - 1 P O 1/2 f ω NB: The S-matrix theory (including Regge pole) is applicable to asymptotically free states only (not to quarks and gluons)!

8 Total Cross-Section Luminosity-independent measurement via optical-theorem  simultaneous evaluation of forward elastic and inelastic rate (TOTEM) elastic rate down to |t|=10-3 GeV2 to keep extrapolation error small (1-2%) Sufficient h coverage to access Nel+Ninel stot (LHC) ~ 110 mb (g=2; best-fit) stot (LHC) ~ 95 mb (g=1) Inversely: (stot + dN/dt|t=0) (DL/L > ~ 2 Dstot/stot) (L + dN/dt|t=0) (Dstot/stot > ~ ½ DL/L)

9 Л.Л. Енковский: ЭЧАЯ т.34 (2003) стр R. Fiore, L. Jenkovszky, R. Orava, E. Predazzi, A. Prokudin, O. Selyugin, Int. J.Mod.Phys., A24: (2009).

10 Elastic Scattering L, stot , b, and r from FIT in CNI region (UA4)
= 14 TeV prediction of BSW model momentum transfer -t ~ (pq)2 q = beam scattering angle p = beam momentum ds/dt (mb/GeV2) L, stot , b, and r from FIT in CNI region (UA4) CNI region: |fC| ~ |fN| LHC: -t ~ GeV2; qmin~3.4 mrad (qmin~120 SPS) .

11

12 CERN LHC, TOTEM Collab., June 26, 2011:

13 Fine structure of the Pomeron (at the LHC)

14 Fine structure of the Pomeron (TOTEM )

15 Tiny oscillations on the cone?

16 Geometrical scaling (GS), saturation and unitarity
On-shell (hadronic) reactions (s,t, Q^2=m^2); t  b transformation: and dictionary: Im h dσ/dt “break” absorptions eBt Gaussian pion clouding “atmosphere” dip -t b

17 Im h 1/2 R(s) b

18 Black disc limit P. Desgrolard, L.L. Jenkovszky and B.V. Struminsky,
Z.Phys. C; Yad. Fizika, 1995.

19 free states only (not to quarks and gluons)!
α(0)\C + - 1 P O 1/2 f ω NB: The S-matrix theory (including Regge pole) is applicable to asymptotically free states only (not to quarks and gluons)!

20

21

22

23

24

25

26

27

28

29

30 Does GS imply saturation? Not necessarily!

31 L.Jenkovszky, A. Lengyel, D. Lontkovskyi:
The Pomeron and Odderon in elastic, inelastic and total cross-sections, hep-ph/056014, International Journal of Modern Physics.

32 Ɛ2 Ɛ

33 L. Jenkovszky and D. Lontkovskiy: In the Proc
L. Jenkovszky and D. Lontkovskiy: In the Proc. of the Crimean (2011) Conference; also presented at the Russian-Spanish Dual Meeting in Barcelona, November, 2011:

34

35

36

37

38

39

40 Extracting the Odderon:
Odd=A(p,bar p)-A(pp)

41

42

43 Low-mass diffraction dissociation at the LHC
L. Jenkovszky, O. Kuprash, J. Lamsa, V. Magas, and R,. Orava: Dual-Regge approach to high-energy, low-mass DD at the LHC, Phys. Rev. D83(2011) ; hep-ph/ L. Jenkovszky, O. Kuprash, J. Lamsa and R. Orava: hep-ph/ , Mod. Phys. Letters A. 26(2011) 1-9, August 2011; L. Jenkovszky, O. Kuprash, Risto Orava, A. Salii, arXiv: , Low missing mass, single- and double diffraction dissociation at the LHC

44

45 FNAL

46

47

48 Factorization (nearly perfect at the LHC!)

49

50

51

52

53

54

55 SD and DD cross sections

56 “Reggeized (dual) Breit-Wigner” formula:

57 SDD cross sections vs. energy.
*Normalization to ~14 mb at 7 TeV.

58 Approximation of background to reference points (t=-0.05)

59 Approximation of background to reference points (t=-0.5)

60 Double differential SD cross sections
(left) Double differential SD cross sections as a functions of M2 for different t values, (right) Double differential SD cross sections as a function of t for different M2 values.

61 Single differential integrated SD cross sections

62 DDD cross sections vs. energy.

63 Integrated DD cross sections
(left) Single differential SD cross sections as a functions of t integrated in different M1:M2 regions. (right) Double differential SD cross sections as a function M2 integrated in region [0.0: 1.0] of t. value.

64 Triple differential DD cross sections

65 The parameters and results

66 Prospects (future plans):
1. Central diffractive meson production (double Pomeron exchange); 2. Charge exchange reactions at the LHC (single Reggeon exchnge), e.g. ppnΔ (in collaboration with Oleg Kuprash and Rainer Schicker)

67

68 Elastic and total scattering, diffraction in hadron- and lepton-induced reactions:
А.Н. Валл, Л.Л. Енковский, Б.В. Струминский: Взаимодействие адронов при высоких энергиях, Физика элементарных частиц и атомного ядра (ЭЧАЯ – Particles and Nuclei) т.19 (1988) стр Л.Л. Енковский: Дифракция в адрон-адронных и лептон-адронных процессах при высоких энергиях, (ЭЧАЯ – Particles and Nuclei) т.34 (2003) стр R. Fiore, L. Jenkovszky, R. Orava, E. Predazzi, A. Prokudin, O. Selyugin, Forward Physics at the LHC; Elastic Scattering, Int. J.Mod.Phys., A24: (2009).

69 DIS & Vector meson production at HERA and at the LHC
In collaboration with R. Fiore, V. Libov, M. Machado and A. Salii

70 Objectives

71 DIS Reconstruction of the DVCS amplitude from DIS or ?

72 HERA Diagrams of DVCS (a) and VMP (b) amplitudes
J/ψ, ψ(2S) Diagrams of DVCS (a) and VMP (b) amplitudes and their Regge-factorized form (c)

73 LHC p1 p1' γ J/ψ, ψ(2S) p2 p2'

74 Exclusive diffraction
Main kinematic variables rapidity gap electron-proton centre-of-mass energy: s photon virtuality: photon-proton centre-of-mass energy: square 4-momentum at the p vertex: Vector Mesons production in diffraction Deeply Virtual Compton Scattering

75 Deeply Virtual Compton Scattering
VM (ρ, ω, φ, J/ψ, Υ) DVCS (γ) IP p V γ* γ* p γ Scale: Q2 + M2 Q2 DVCS properties: Similar to VM production, but γ instead of VM in the final state No VM wave-function involved Important to determine Generalized Parton Distributions sensible to the correlations in the proton GPDs are an ingredient for estimating diffractive cross sections at the LHC GPD

76 Diffraction: soft -> hard
Vector Meson productionJ IP ‘soft’ ‘hard’ g 2-gluon exchange (pQCD)‏ Gluon density in the proton Cross section proportional to probability of finding 2 gluons in the proton increases from soft (~0.2, “soft Pomeron”) to hard (~0.8, “hard Pomeron”) b decreases from soft (~10 GeV-2) to hard (~4-5 GeV-2)‏

77 Regge-type DVCS amplitude
M. Capua, S. F., R. Fiore, L. L. Jenkovszky, and F Paccanoni Published in: Physics Letters B645 (Feb. 2007) (z) Applications for the model can be: Study of various regimes of the scattering amplitude vs Q2, W, t (perturbative –> unperturbative QCD) Study of GPDs A new variable is introduced: z = t - Q2 DVCS amplitude: the t dependence at the vertex pIPp is introduced by: the vertex γ*IPγ is introduced by the trajectory: indicating with: the DVCS amplitude can be written as:

78 Basic ideas of the Kiev-Calabria-Padova Collab.: M. Capua, R. Fiore, L. J., F. Paccanoni, A.Papa “A DVCS Amplitude’”, Phys. Lett. B645 (2007) ; hep-ph/ ; S. Fazio, R. Fiore et al., “Unifying “soft” and “hard…”, PR D90(2014)016007, arXiv Reggeometry=Regge+geometry (play on words = pun) How to combine s, t and Q^2 dependencies in a binary reaction?

79 b(Q2+M2) - VM

80 First measured in h-h scattering
Pomeron Trajectory First measured in h-h scattering Regge-type: Linear Pomeron trajectory Soft Pomeron values (0) ≈ 1.09 ' ≈ 0.25 (0) and ' are foundamental parameters to represent the basic features of strong interactions (0): determines the energy dependence of the diff. Cross section ': determines the energy dependence of the transverse extention system

81

82 Unique Pomeron with two (“soft” and “hard”) components
R. Fiore et al. Phys. Rev. PR D90(2014)016007, arXiv

83

84

85 Table 1. Fitting results Table 2. α(0), α’

86 rho0(1)

87 phi (1)

88 J/psi (1)

89 DVCS (1)

90

91

92

93 Summary and prospects for ep collisions: I. Problems:
1) unifying DVCS and VMP (the photon “mass”); 2) balancing between “soft” and “hard”, QCD? 3) extension to low energies (non-diffractive component, secondary Reggeons) ; 4) saturation effects, unitarity (gap survival); 5) Is BFKL Regge behaved? Prospects: application to the new ZEUS data. II. Moving from HERA to the LHC: ultraperipheral pp, pA and AA collisions: R. Fiore, L. J., V. Libov, and M. Machado, arXiv, 2014, to be publ. in: Teor. and Math. Physics. Predecessors: Joakim Nystrand, A. Szczurek et al, L. Motyka, G. Watt; Brazilian group…). Contrary to ep, no Q^2 or t dependence here.

94 LHC p1 p1' γ J/ψ, ψ(2S) p2 p2'

95 Photon flux: V. M. Budnev et al. , Phys. Rep. , 1975; G. Baur et al
Photon flux: V.M. Budnev et al., Phys. Rep., 1975; G. Baur et al., ibid, 1988.

96 Adding LHCb rapidity cross section
By fitting the power (and normalization) a much better description of data can be obtained (green curve) However, power tends to be very small (δ=0.37) which contradicts HERA (page 4) Both power law and geometric model are much flatter than the data

97 Low-energy extrapolation

98 γp cross section However, the fitted power law and logarithm contradict data on the γp cross section Geometric model gives the best description! Note, however, that the power law with δ=0.8 might be not the best fit!

99 γp cross section

100 Prospects:

101 Open problems: 1. Interpolation in energy: from the Fermilab and ISR to the LHC; (Inclusion of non-leading contributions); 3. Deviation from a simple Pomeron pole model and breakdown of Regge-factorization; 4. Experimental studies of the exclusive channels (p+π,…) produced from the decay of resonances (N*, Roper?,,,) in the nearly forward direction. 5. Turn down of the cross section towards t=o?! 6. Need for a bank of models. Open an international PROJECT


Download ppt "Elastic and inelastic diffraction"

Similar presentations


Ads by Google