Presentation is loading. Please wait.

Presentation is loading. Please wait.

Beyond-standard model physics searches in neutron and nuclear beta decay Stefan BaeΞ²ler Inst. Nucl. Part. Phys.

Similar presentations


Presentation on theme: "Beyond-standard model physics searches in neutron and nuclear beta decay Stefan BaeΞ²ler Inst. Nucl. Part. Phys."β€” Presentation transcript:

1 Beyond-standard model physics searches in neutron and nuclear beta decay
Stefan BaeΞ²ler Inst. Nucl. Part. Phys.

2 Table of contents Beyond-standard model physics searches in neutron and nuclear beta decay: Is the Cabbibo Kobayashi Maskawa (CKM) matrix unitary? 𝑑 β€² 𝑠 β€² 𝑏 β€² = 𝑉 𝑒𝑑 𝑉 𝑒𝑠 𝑉 𝑒𝑏 𝑉 𝑐𝑑 𝑉 𝑐𝑠 𝑉 𝑐𝑏 𝑉 𝑑𝑑 𝑉 𝑑𝑠 𝑉 𝑑𝑏 βˆ™ 𝑑 𝑠 𝑏 Various unitarity tests possible; the most precise one is the one in the first row: 𝑉 𝑒𝑑 𝑉 𝑒𝑠 𝑉 𝑒𝑏 2 =1 V-A structure of weak interaction: Scalar- and tensor (S,T) interactions, which could be mediated by non-standard intermediate bosons, causes beta decays with one of the leptons having the opposite helicity. e- 𝜎 𝑛 𝜎 𝑒 e- 𝜎 𝑒 p n 𝜎 𝜈 𝜎 𝜈 𝜈 𝑒 𝜈 𝑒

3 Established determination of 𝑽 𝒖𝒅
0 + ,1 Use beta decay. Most precise in superallowed beta decays: (Partial) lifetime: 𝑑 1/2 , 𝐡𝑅 1 𝑓 𝐸 𝑑 = 2πœ‹ ℏ <π‘“π‘’πœˆ 𝐻 𝑖> 2 Integration: 1 𝑓𝑑 = 𝐺 𝐹 2 𝑉 𝑒𝑑 2 𝐾 <𝑓 𝑂 𝑖> 2 Mass difference 𝑄 0 + ,1 Can be computed with precision only in some cases, In which the nuclear wave function overlap is well-known. For superallowed decays, 𝑂=1 and <𝑓 𝑂 𝑖> 2 β‰ˆ2. β†’ Good to a few percent, see left 3080 𝑓𝑑 (𝑠) 3060 3040 10 20 30 40 𝑍 of daughter (from Hardy, Towner, PRC 91, (2015))

4 Established determination of 𝑽 𝒖𝒅
0 + ,1 Use beta decay. Most precise in superallowed beta decays: (Partial) lifetime: 𝑑 1/2 , 𝐡𝑅 1 𝑓 𝐸 𝑑 = 2πœ‹ ℏ <π‘“π‘’πœˆ 𝐻 𝑖> 2 Integration: 1 𝑓𝑑 = 𝐺 𝐹 2 𝑉 𝑒𝑑 2 𝐾 <𝑓 𝑂 𝑖> 2 Mass difference 𝑄 0 + ,1 If there is an issue, it is believed to be the isospin-breaking correction that is nuclear structure dependent. Can be computed with precision only in some cases, In which the nuclear wave function overlap is well-known. Improvement: Apply corrections: ℱ𝑑=𝑓𝑑 1+ 𝛿 𝑅 β€² 1+ 𝛿 𝑁𝑆 βˆ’ 𝛿 𝐢 10 C 22 Mg 38 Ca 46 V 14 O 26 m Al 34 Cl 38 m K 50 Mn 62 Ga 74 Rb 34 3090 Ar 42 Sc 54 Co Energy-dependent rad. corr. Isospin-breaking correction (to matrix element) ℱ𝑑 (𝑠) 3080 Nucleus-dependent rad. corr. This quantity contributes with largest uncertainty to 𝑉 𝑒𝑑 3070 Inner rad. corr. 3060 10 20 30 40 1 ℱ𝑑 = 2𝐺 𝐹 2 𝑉 𝑒𝑑 2 𝐾 1+ Ξ” 𝑉 𝑅 𝑍 of daughter (from J. Hardy, I. Towner, PRC 91, (2015))

5 Determination of 𝑽 𝒖𝒔 Use Kl3 (Ke3 or KΞΌ3) semileptonic decays, e.g. 𝐾 𝐿 β†’ πœ‹ + + 𝑒 βˆ’ + 𝜈 𝑒 : Ξ“ 𝐾𝑙3 =(π‘˜π‘›π‘œπ‘€π‘›)β‹… 𝑉 𝑒𝑠 𝑓 + πΎπœ‹ 𝐼 𝐾 𝑙 1+ 𝛿 𝐸𝑀 𝐾𝑙 + 𝛿 π‘†π‘ˆ 2 𝐾𝑙 Correction to phase space integral for charged Kaons Lepton formfactor phase space integral Radiative correction Current issue: 𝑓 + πΎπœ‹ 0 needs to come from theory (Lattice-QCD). Present averages are: 𝑁 𝑓 𝑓 + πΎπœ‹ 0 𝑉 𝑒𝑠 PDG16 average, based on… 2+1 0.9677(37) 𝑒π‘₯𝑝+𝑅𝐢 9 πΏπ‘Žπ‘‘ PRD87, (2013), JHEP 06, 164 (2015) 2+1+1 0.9704(24)(22) π‘‘β„Ž exp PRL112, (2014) Use ratio of leptonic decays: 𝐾 Β± β†’ πœ‡ Β± + 𝜈 πœ‡ / 𝜈 πœ‡ +𝛾 to πœ‹ Β± β†’ πœ‡ Β± + 𝜈 πœ‡ / 𝜈 πœ‡ +𝛾 Ξ“ πΎπœ‡2 Ξ“ πœ‹πœ‡2 = 𝑉 𝑒𝑠 𝑓 + 𝐾 𝑉 𝑒𝑑 𝑓 + πœ‹ corrections Result is 𝑉 𝑒𝑠 = 𝑒π‘₯𝑝 𝑅𝐢 πΏπ‘Žπ‘‘ Use hadronic tau decays: E.g., πœβ†’πΎ+ 𝜈 𝜏 Ξ“βˆ| 𝑉 𝑒𝑠 ​ 2 (with theory input) Result is 𝑉 𝑒𝑠 =0.2202(15) NB: I haven’t talked about 𝑉 𝑒𝑏 . 𝑉 𝑒𝑏 is determined from decays of B/D mesons. Its value, 𝑉 𝑒𝑏 = β‹… 10 βˆ’3 is controversial, but small enough to be neglected here.

6 Test of CKM unitarity in the first row.
𝑉 𝑒𝑑 2 =1βˆ’ 𝑉 𝑒𝑏 2 βˆ’ 𝑉 𝑒𝑠 2 CKM Unitarity test ( 𝑉 𝑒𝑑 𝑉 𝑒𝑠 𝑉 𝑒𝑏 2 =1 ) was perfect for a decade, after being off for even longer (Kaon experiment has moved). Now, updates of lattice calculations of the Kaon form factors put agreement in question.

7 Observables in Neutron Beta Decay
Observables in neutron beta decay, as a function of generally possible coupling constants (assuming only Lorentz-Invariance): Jackson et al., PR 106, 517 (1957), C. F. v.WeizsΓ€cker, Z. f. Phys. 102,572 (1936), M. Fierz, Z. f. Phys. 105, 553 (1937) e- 𝜎 𝑛 p n 𝜈 𝑒 Fierz interference term Beta-Asymmetry Neutrino-Electron-Correlation Neutron lifetime 8

8 Coupling Constants of the Weak Interaction
gA = GFΒ·VudΒ·Ξ» 𝜏 𝑛 βˆ’1 ∝ 𝑔 𝑉 2 +3 𝑔 𝐴 2 Coupling Constants in Neutron Decay 𝐴=𝐴 πœ†= 𝑔 𝐴 𝑔 𝑉 p = (udu) u e- WΒ± Ξ½e gV , gA gV = GFΒ·VudΒ·1 d n = (ddu) n β†’ p + e- + Ξ½e Primordial Nucleosynthesis Solar cycle WΒ± e- Ξ½e n p n + Ξ½e ↔ p + e- WΒ± e+ Ξ½e p + p 2H+ p + p β†’ 2H+ + e+ + Ξ½e Start of Big Bang Nucleosynthesis, Primordial 4He abundance Start of Solar Cycle, determines amount of Solar Neutrinos 9

9 Neutron Lifetime Measurements
Beam: Decay rate: 𝑑𝑁 𝑑𝑑 = 𝑁 𝜏 𝑛 Bottle: Neutron counts : 𝑁= 𝑁 0 𝑒 βˆ’ 𝑑 πœπ‘’π‘“π‘“ with 1 πœπ‘’π‘“π‘“ = 1 𝜏 𝑛 𝜏 π‘€π‘Žπ‘™π‘™ UCN from source UCN Storage bottle(s) Shutter UCN detector Many new experiments: Somehow improved material bottles (e.g. Serebrov et al.) Magnetic bottles (e.g. UCNΟ„, C.-Y. Liu et al., LANL; Ο„SPECT, W. Heil, M. Beck et al., TRIGA Mainz; HOPE, O. Zimmer et al., ILL Grenoble, PENELOPE, S. Paul et al., TU MΓΌnchen ) Beam Lifetime (only at NIST)

10 The Beta Asymmetry 𝜎 𝑛 e- p n 𝜈 𝑒 PERKEO II
𝜎 𝑛 e- p n 𝜈 𝑒 Electron Detector (Plastic Scintillator) Decay Electrons πœ†=βˆ’1.2755(30) from M.P. Mendenhall et al., PRC 87, (2013) Polarized Neutrons Note: The PERKEO III collaboration plans to release their beta asymmetry result, with Δ𝐴 𝐴 ∼2β‹… 10 βˆ’3 , corresponding to π›Ώπœ† πœ† ∼7β‹… 10 βˆ’4 , any day now. Split Pair Magnet PERKEO II Magnetic Field πœ†=βˆ’1.2748(+13/βˆ’14) from D. Mund et al., PRL 110, (2013)

11 Determination of coupling constants
Determination of ratio πœ†= 𝑔 𝐴 𝑔 𝑉 from 𝐴= βˆ’2 Re πœ† + πœ† πœ† or π‘Ž= 1βˆ’ πœ† πœ† 2 : Note: πœ† should be fixed by standard model. However, precision of its calculation from first principles is insufficient: PNDME’16 LHPC’12 LHPC’10 RBC/UKQCD’08 Lin/Orginos’07 RQCD’14 QCDSF/UKQCD’13 ETMC’15 CLS’12 RBC’08 1.00 1.25 1.50 1.75 𝑁 𝑓 =2 𝑁 𝑓 =2+1 2+1+1 𝑁 f = πœ† = 𝑔 𝐴 / 𝑔 𝑉 Δλ/Ξ» = 0.03% (Nab goal) PERKEO II (2013) UCNA (2013) UCNA (2010) ( ) Byrne (2002) Average: ( ) PERKEO II (2002) (21) Mostovoi (2001) Yerozolimskii (1997) PERKEO II (1997) ( ) Liaud (1997) PERKEO I (1986) Stratowa (1978) -1.28 -1.26 -1.24 πœ†=𝑔𝐴/𝑔𝑉 Most recent flavor Lattice-QCD result from PNDME: T. Bhattacharya et al., PRD 94, (2016)

12 Test of CKM unitarity in the first row.
For neutron data to be competitive with superallowed decays, one wants: Ξ” 𝜏 𝑛 𝜏 𝑛 ∼0.3 s (Neutron lifetime experiment underway were discussed earlier) Ξ”πœ† πœ† ∼3β‹… 10 βˆ’4

13 The PERC facility @ FRM II
Electron or proton detector Scintillator (e-), Silicon, … PERC facility: Active decay volume in a 8 m long neutron guide e,p selector is magnetic Filter: phase space, systematics PERC can be coupled with various spectrometers PERC Magnet delivery planned for fall 2017 Goal for beta asymmetry 𝐴: Δ𝐴 𝐴 ≀5β‹… 10 βˆ’4 ⇔ Ξ”πœ† πœ† ≀2β‹… 10 βˆ’4 (Requires polarization control)! D. Dubbers et al., Nucl. Instr. Meth. A 596 (2008) 238 and arXiv: MAC-E filter (β€œaSPECT”) RΓ—B spectrometer … G. Konrad, SMI Cryostat 𝐡1 = 6 T 𝐡0 = 1.5 T User System

14 ( 𝑝 𝑝 is inferred from proton time-of-flight)
Idea of SNS n e- 𝜈 𝑒 p Fundamental Neutron Physics Beamline Spallation Neutron Source (SNS) πœƒ π‘’πœˆ π‘‘Ξ“βˆπœš 𝐸 𝑒 1+π‘Ž 𝑝 𝑒 𝐸 𝑒 cos πœƒ π‘’πœˆ +𝑏 π‘š 𝑒 𝐸 𝑒 8 meters Kinematics in Infinite Nuclear Mass Approximation: Energy Conservation: 𝐸 𝜈 = 𝐸 𝑒,π‘šπ‘Žπ‘₯ βˆ’ 𝐸 𝑒 Momentum Conservation: 𝑝 𝑝 2 = 𝑝 𝑒 2 + 𝑝 𝜈 2 +2 𝑝 𝑒 𝑝 𝜈 cos πœƒ π‘’πœˆ Goal: Determine 𝑝 𝑝 2 , 𝐸 𝑒 spectrum Ξ”π‘Ž π‘Ž ≀ 10 βˆ’3 ⇔ Ξ”πœ† πœ† ≀3β‹… 10 βˆ’4 ( 𝑝 𝑝 is inferred from proton time-of-flight) Cold Neutron Beam from left General Idea: J.D. Bowman, Journ. Res. NIST 110, 40 (2005) Original configuration: D. PočaniΔ‡ et al., NIM A 611, 211 (2009) Asymmetric configuration: S. Baeßler et al., J. Phys. G 41, (2014)

15 What if the test of CKM unitarity fails?
Like all precision measurements, a failure of the unitarity test would not point to a single cause: Various possibilities exist, among those are: Heavy quarks: Exotic muon decays: All direct determinations of 𝑉 𝑒𝑑 use 𝐺 𝐹 from muon lifetime. If the muon had additional decay modes (πœ‡β†’π‘‹+π‘Œ+…), 𝐺 𝐹 (and 𝑉 𝑒𝑑 ) would be determined wrong. E.g., πœ‡ + β†’ 𝑒 + + 𝜈 𝑒 +𝜈 πœ‡ (wrong neutrinos) would be very relevant for neutrino factories. (Semi-)leptonic decays of nuclei through something other than exchange of π‘Š Β± bosons: 𝑑′ 𝑠′ 𝑏′ 𝐷′ = 𝑉 𝑒𝑑 𝑉 𝑒𝑠 𝑉 𝑒𝑏 𝑉 𝑒𝐷 𝑉 𝑐𝑑 𝑉 𝑐𝑠 𝑉 𝑐𝑏 𝑉 𝑐𝐷 𝑉 𝑑𝑑 𝑉 𝑑𝑠 𝑉 𝑑𝑏 𝑉 𝑑𝐷 𝑉 𝐸𝑑 𝑉 𝐸𝑠 𝑉 𝐸𝑏 𝑉 𝐸𝐷 βˆ™ 𝑑 𝑠 𝑏 𝐷 𝑉 𝑒𝐷 2 =1βˆ’ 𝑉 𝑒𝑏 2 βˆ’ 𝑉 𝑒𝑠 2 βˆ’ 𝑉 𝑒𝑑 2 W. Marciano, A. Sirlin, PRL 56, 22 (1986) P. Langacker, D. London, PRD 38, 886 (1988) K.S. Babu and S. Pakvasa, hep-ph/ Specific models: E.g. W. Marciano, A. Sirlin, PRD 35, 1672 (1987). R. Barbieri et al., PLB 156, 348 (1985) K. Hagiwara et al., PRL 75, 3605 (1995) A. Kurylov, M. Ramsey-Musolf, PRL 88, (2000) Energy scale of new physics: Ξ›β‰₯11 TeV V. Cirigliano et al., NPB 830, 95 (2010)

16 Search for effective scalar (S) and tensor (T) interaction
𝜎 𝑛 𝜎 𝑒 e- 𝜎 𝑒 p n 𝜎 𝜈 𝜎 𝜈 𝜈 𝑒 𝜈 𝑒 Traditional low energy effective Lagrangian: β„’ 𝑒𝑓𝑓 =βˆ’ 𝐢 𝑉 𝑒 𝛾 πœ‡ 𝜈 𝑒 β‹… 𝑝 𝛾 πœ‡ π‘›βˆ’ 𝐢 𝑉 β€² 𝑒 𝛾 πœ‡ 𝛾 5 𝜈 𝑒 β‹… 𝑝 𝛾 πœ‡ 𝑛 βˆ’ 𝐢 𝐴 𝑒 𝛾 πœ‡ 𝛾 5 𝜈 𝑒 β‹… 𝑝 𝛾 πœ‡ 𝛾 5 π‘›βˆ’ 𝐢 𝐴 β€² 𝑒 𝛾 πœ‡ 𝜈 𝑒 β‹… 𝑝 𝛾 πœ‡ 𝛾 5 𝑛 + 𝐢 𝑆 𝑒 𝜈 𝑒 β‹… 𝑝 π‘›βˆ’ 𝐢 𝑆 β€² 𝑒 𝛾 5 𝜈 𝑒 β‹… 𝑝 𝑛 + 𝐢 𝑇 𝑒 𝜎 πœ‡πœˆ 𝜈 𝑒 β‹… 𝑝 𝜎 πœ‡πœˆ π‘›βˆ’ 𝐢 𝑇 β€² 𝑒 𝜎 πœ‡πœˆ 𝛾 5 𝜈 𝑒 β‹… 𝑝 𝜎 πœ‡πœˆ 𝑛 + 𝐢 𝑃 β‹… 𝑒 𝛾 5 𝜈 𝑒 β‹… 𝑝 𝛾 5 π‘›βˆ’ 𝐢 𝑃 β€² β‹… 𝑒 𝜈 𝑒 β‹… 𝑝 𝛾 5 𝑛 + h.c. In SM, 𝐢 𝑉 = 𝐢 𝑉 β€² =1, 𝐢 𝐴 = 𝐢 𝐴 β€² =πœ†, all others zero. The Fierz term is unique in that it is the only term that is first-order sensitive to S,T Decay rate ∝𝜚 𝐸 1+𝑏 π‘š 𝑒 𝐸

17 Search for effective scalar (S) and tensor (T) interaction
Low-Energy search for scalar current: Determine Fierz term 𝑏 𝐹 =βˆ’( 𝐢 𝑆 + 𝐢 𝑆 β€² )/ 𝐢 𝑉 in superallowed Fermi decays: J. Hardy, I. Towner find 𝐢 𝑆 + 𝐢 𝑆 β€² 2 𝐢 𝑉 = (90% CL) (from J. Hardy, I. Towner, PRC 91, (2015)) Improvements possible with measurements using light nuclei Using this, and combination of β„± 𝑑 βˆ’1 ∝ 1+ 𝑏 𝐹 𝛾 π‘š 𝑒 𝐸 , 𝜏 𝑛 βˆ’1 ∝(1+3 πœ† 2 ) 1+ 𝑏 𝑛 π‘š 𝑒 𝐸 with 𝑏 𝑛 ∝ 𝐢 𝑆 + 𝐢 𝑆 β€² 𝐢 𝑉 +3 𝐢 𝑇 + 𝐢 𝑇 β€² 𝐢 𝐴 , and beta symmetry 𝐴= 𝐴 0 / 1+ 𝑏 𝑛 π‘š 𝑒 𝐸 (for πœ†): R.W. Pattie et al. get 𝐢 𝑇 + 𝐢 𝑇 β€² 2 𝐢 𝐴 =βˆ’0.0007(27) (90% CL) from R.W. Pattie Jr., PRC 88, (2013) & PRC 92, (E) (2015) SB 2016 update: 𝐢 𝑇 + 𝐢 𝑇 β€² 2 𝐢 𝐴 =βˆ’ (90% CL) after G. Konrad, ArXiV:1007:3027 Resolution of neutron lifetime issue would give large improvement.

18 Effective field theory for beta decay at quark level
Effective low-energy Lagrangian: β„’ 𝑒𝑓𝑓 =βˆ’ 𝐺 𝐹 𝑉 𝑒𝑑 πœ– 𝐿 β‹… 𝑒 𝛾 πœ‡ 1βˆ’ 𝛾 5 𝜈 𝑒 β‹… 𝑒 𝛾 πœ‡ 1βˆ’ 𝛾 5 𝑑 + πœ– 𝑅 β‹… 𝑒 𝛾 πœ‡ 1βˆ’ 𝛾 5 𝜈 𝑒 β‹… 𝑒 𝛾 πœ‡ 1+ 𝛾 5 𝑑 + πœ– 𝑆 β‹… 𝑒 1βˆ’ 𝛾 5 𝜈 𝑒 β‹… 𝑒 𝑑 + πœ– 𝑇 β‹… 𝑒 𝜎 πœ‡πœˆ 1βˆ’ 𝛾 5 𝜈 𝑒 β‹… 𝑒 𝜎 πœ‡πœˆ 1βˆ’ 𝛾 5 𝑑 βˆ’ πœ– 𝑃 β‹… 𝑒 𝛾 πœ‡ 1βˆ’ 𝛾 5 𝜈 𝑒 β‹… 𝑒 𝛾 5 𝑑 + terms with πœ– that involve righthanded 𝜈 𝑒 +h.c. Unobservable, suppressed with π‘ž/ 𝑀 𝑁 Unobservable, all corr. coeff. only sensitive in second order Connection with traditional coupling constants from nuclear and neutron physics: 𝐢 𝑉 + 𝐢 𝑉 β€² 2 = 𝐺 𝐹 𝑉 𝑒𝑑 𝑔 𝑉 1+ πœ– 𝐿 + πœ– 𝑅 𝐢 𝐴 + 𝐢 𝐴 β€² 2 =βˆ’ 𝐺 𝐹 𝑉 𝑒𝑑 𝑔 𝐴 1+ πœ– 𝐿 βˆ’ πœ– 𝑅 𝐢 𝑆 + 𝐢 𝑆 β€² 2 = 𝐺 𝐹 𝑉 𝑒𝑑 𝑔 𝑆 πœ– 𝑆 𝐢 𝑇 + 𝐢 𝑇 β€² 2 = 𝐺 𝐹 𝑉 𝑒𝑑 𝑔 𝑇 πœ– 𝑇 𝑒 𝑑= 𝑔 𝑆 𝑝 𝑛 𝑒 𝜎 πœ‡πœˆ 𝑑= 𝑔 𝑇 𝑝 𝜎 πœ‡πœˆ 𝑛 …

19 Scalar(S) and tensor(T) interactions in beta decay
Other searches for Beyond Standard Model Physics: S,T interactions (fermions with β€œwrong” helicity), e.g. through W’ bosons; weak magnetism; second class currents; … Low-energy experiments (mostly 0 + β†’ 0 + , πœ‹β†’π‘’πœˆπ›Ύ); 𝑔 𝑆,𝑇 from quark model Low-energy experiments (add 𝑏 < 10 βˆ’3 in n, 6He); 𝑔 𝑆,𝑇 from quark model Low-energy experiments, 𝑔 𝑆,𝑇 from Lattice QCD Low-energy experiments, 𝑔 𝑆,𝑇 from Lattice QCD LHC: 8 TeV, 20 fb-1 LHC: 14 TeV, 10,300 fb-1 LHC-Search for 𝑝𝑝→𝑒+𝜈+ other stuff and 𝑝𝑝→𝑒+𝑒+ other stuff

20 region (field maximum)
The determination of the Fierz Interference term 𝒃 in neutron decay with Nab n e- 𝜈 𝑒 p πœƒ π‘’πœˆ π‘‘Ξ“βˆπœš 𝐸 𝑒 1+π‘Ž 𝑝 𝑒 𝐸 𝑒 cos πœƒ π‘’πœˆ +𝑏 π‘š 𝑒 𝐸 𝑒 decay volume 0 kV - 30 kV +1 kV magnetic filter region (field maximum) Neutron beam TOF region (low field) 4 m flight path skipped 1 m flight path skipped 0 V -30 kV 2 4 6 8 E e , k i n ( V ) Y l d a r b . u t s = +0.1 SM Electron spectrum: Goal: 𝑏 𝑛 ≀3β‹… 10 βˆ’3

21 The determination of the Fierz Interference term 𝒃 𝝂 in neutron decay with UCNB @ LANL
Key component Diagram courtesy of: Albert Young 𝐡 ex𝑝 = 𝑁 βˆ’βˆ’ βˆ’ 𝑁 ++ 𝑁 βˆ’βˆ’ + 𝑁 ++ ∝ 𝐡+ 𝑏 𝜈 π‘š 𝑒 /𝐸 1+𝑏 π‘š 𝑒 /𝐸 Goal: 𝑏 𝜈 ≀ 2..3 β‹… 10 βˆ’3

22 6He little-b measurement at UW
Fierz interference term 𝒃 from He-6 beta decay 6He little-b measurement at UW M. Fertl1, A. Garcia1, M. Guigue4, P. Kammel1, A. Leredde2, P. Mueller2, R.G.H. Robertson1, G. Rybka1, G. Savard2, D. Stancil3, M. Sternberg1, H.E. Swanson1, B.A. Vandeevender4, A. Young3 1University of Washington, 2Argonne National Lab, 3North Carolina State University, 4Pacific Northwest National Laboratory Use cyclotron radiation spectroscopy. Similar to Project 8 setup for tritium decay. M. Fertl et al., PRL 114, (2015) Goal: measure β€œlittle b” to 10-3 or better in 6He Statistics not a problem. Determine e’s energy at birth

23 Thank you for your attention!
Summary and outlook Measurement of coupling constants in weak interaction allows test of the unitarity of the CKM matrix is most precisely done in the first row; some tension (again). Substantial improvement of precision not in sight. Measurement of Fierz term in beta decay allows the search for new physics that manifests itself at low energies as scalar and/or tensor interaction. This is competitive to searches at LHC, and experimental improvements are likely in the near future. The latter needs form factors ( 𝑔 𝑆 and 𝑔 𝑇 ) to connect nuclear and quark-level description. Recent work in theory (Lattice QCD) determined them at the 10% level. Experimental verification desirable. Thank you for your attention! Grâßer


Download ppt "Beyond-standard model physics searches in neutron and nuclear beta decay Stefan BaeΞ²ler Inst. Nucl. Part. Phys."

Similar presentations


Ads by Google