Presentation is loading. Please wait.

Presentation is loading. Please wait.

CH3I VMI-REMPI data and analysis:

Similar presentations


Presentation on theme: "CH3I VMI-REMPI data and analysis:"— Presentation transcript:

1 CH3I VMI-REMPI data and analysis:
Content pages: Plan-table and fig.………………………………………………………………………… 2-3 Figs. From Pavle:………………………………………………………………………… 4-9 CH3+, KERs, images and threshold predictions:………………………… CH2+, KERs, and threshold predictions:………………………… I+, KERs, and threshold predictions:……………………………… 29-36 e- PES´s, and threshold predictions…… …… Conclusive remarks:……………………………………………………………………….. 56 From the literature(energetics of CH3)………………………………………… Energetics:…………………………………………………………………………………… 61-65 Updated:

2 VMI-REMPI experimental plan:
CH3I: no. 2hv/ eV 2hv/cm-1 1hv/cm-1 l / nm(1hv) Rydberg state converging to ref: Comment Predicted / 6.777 6s(0,..) 2E1/2 Table 4* 1 6.906 6s (1/2) +v2 2E1/2 $ Table 5* Not accessable by MOPO; use dye laser 2 7.306 6p (0…) # 2E3/2 Try use MOPO 3 7.36 6p(3/2) +v3 Table 6 * 4a 4b 7.381 (?) Unassigned peak, relatively strong (?) 4c 5 7.402 6p(3/2) +nv6 6 7.642 6p(3/2) +nv1 7 7.82 5d(0,…) # 8 7.996 6p(0,…) # 9 8.022 7s(0,…) # 10 8.299 7s(3/2) +nv2 Table 6* 11 8.429 7p(0,…) # (Try use MOPO); used exc./dye 12 8.652 i.e. 6 fundamental (0,…) bands (#); 5 vibrational bands; 1 uncertain band(?) / three bands for convergence to 2E1/2 ($) *ref: ; ; sheet: Ry spectra

3 (4) (2) (12) (6) (11) (10) (0) (7) (3) (8) (9) (1)

4 CH3+ KERs… and predictions I+ KERs……… and predictions
Figs from Pavle: CH3+ KERs… and predictions I+ KERs……… and predictions PES´s………… and predictions See :

5 KER for CH3+ from Pavle; Fig. from OriginPro 8.5 eV 170919 (2) 7.306
6p (0…) # 2E3/2 from Pavle; Fig. from OriginPro 8.5 eV

6 , CH3I at nm, CH3

7 20-09-2017, CH3I at 358.835 nm, I fragments, irises low

8 NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC)
7.306 6p (0…) # 2E3/2 Ideas from Pavle; Fig. from OriginPro 8.5 Also in: ; sheet: Predictions NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC) eV

9 20-09-2017, CH3I at 358.835 nm, photoelectrons
From PC..…CH3I results.ppt in

10 CH3+ KERs, images and threshold predictions:

11 eV CH3+ KERs, Off resonance resonance resonance
170928 (1) 6.906 6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 6s (1/2) +v2 2E1/2 $ 170920 resonance resonance eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay18,Gr19 ; sheets: Ry spectra

12 eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2 MOPO 170919 (2) 7.306
6p (0…) # 2E3/2 170929 (2) 7.306 6p (0…) # 2E3/2 exc./dye eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay19,Gr20 ; sheets: Ry spectra

13 eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2
171003; (4a); (exp.) 171019; (4a); (exp.) less space charge effect eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay31,Gr34 ; sheets: Ry spectra

14 eV CH3+ KERs, Abel converted; file: „abel_speed“
170925 (11) 8.429 7p(0,…) # 2E3/2 Abel converted; file: „abel_speed“ NOT Abel converted; file: „x_speed“ 171020 (11) 7p(0,…) # 2E3/2 eV For E(M+,eV) = 3.50e-5 x (pix)2 ;Lay12,Gr13 ; sheets: Ry spectra

15 eV CH3+ Prediction calc: polarizer not IN Possibly:
(12) 8.652 7s(0,…) # 2E1/2 $ polarizer not IN Prediction calc: Possibly: CH3I + 1hvpd -> CH3I* CH3I* -> CH3#(..vi=1..)+ I; CH3#(..vi=1..)+ 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI CH3#(..vi=1..): vibrationally excited NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I* CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI eV Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI eV Subscript notations: pd = photodissociation i= ionization DE = 0.33 eV / 2662 cm-1(?) eV For E(M+,eV) = e-5 x (pix)2 ;Lay7,Gr7 ; sheet: Predictions

16 eV CH3+ KERs, updated: 170926 Off resonance see also slide 6
286.6 (exp.) 170922; (12) 8.652 7s(0,…) # 2E1/2 $ (exp.) see also slide 6 above (PG) for predictions eV For E(M+,eV) = 3.50e-5 x (pix)2 ;Lay13,Gr15 ; sheet: Ry spectra

17 eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I*
170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.476 eV (PC;CRC) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = e-5 x (pix)2 ;Lay2,Gr3 ; sheets: Ry spectra & Predictions

18 eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I*
170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = e-5 x (pix)2 ;Lay2,Gr3 ; sheets: Ry spectra & Predictions

19 NB: The polarizer was not inserted in
CH3+ images: Ry(2), (170920); nm(exp.) <= x1_10fl (RAW file) Ry(12), ; nm(exp.) <= x1_5fl (RAW file) Ry(1), ; nm(exp.) <= x1_5fl (RAW file) NB: The polarizer was not inserted in the exp., hence, the angul. distrib. is invalid Rings might be because of 1hvpd channel(?)i.e.:

20 eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394
170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 NO polarizer in 170921; (12) 7s(0,…) # 2E1/2 $ 170922; (12) 7s(0,…) # 2E1/2 $ eV Virtually no difference ;Lay6,Gr8 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c,7,8 ; sheet: Ry spectra

21 eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394
170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171011; (9c); (exp.) 171020 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ eV Virtually no difference ;Lay6,Gr8 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c,7,8,6,9c ; sheet: Ry spectra

22 CH3+ KERs Comparison of shifted spectra: D(1hv) comparison Likely channels………………………. 22 D(3hv) comparison

23 D1hv / eV CH3+ KERs, Common thresholds for
CH3I+1hv -> CH3 (X,v1v2v3v4)+I/I*: NO FITS! 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV ;Lay26,Gr26 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c ; sheet: Ry spectra; Predictions-short

24 D1hv / eV Common thresholds for CH3+ KERs,
CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I interpretation Likely 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 171005; (7); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV ;Lay28,Gr28 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c,7 ; sheet: Ry spectra; Predictions-short

25 D3hv / eV CH3+ KERs, Common thresholds for
CH3I+3hv -> CH3 **(Ry,0000)+I/I*: CH3 **(3p2A2) CH3 **(3p2A2) 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 Could be vibrational structure In the CH3**(3p2A2) + I Channel (?); however peaks do not match and PES spectra suggest that CH3** formation is not important. See slide 43 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ Virtually no difference D3hv / eV ;Lay27,Gr27 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c ; sheet: Ry spectra; Predictions-short

26 CH2+ KERs:

27 eV CH2+ KERs, For E(M+,eV) = 3.41407e-5 x (pix)2 (1) 6.906 55700.63
6s (1/2) +v2 2E1/2 $ eV ;Lay3,Gr4 For E(M+,eV) = e-5 x (pix)2 ; sheet: Ry spectra

28 eV CH2+ KERs, Z: Space charge NO Space charge Z: See PG PPT file on
170920 (1) 6s (1/2) +v2 2E1/2 $ 171019 (1) 6s (1/2) +v2 2E1/2 $ See PG PPT file on Images and KERs the KERs don´t seem to agree(?) 170929 (2) (exp.) 6p (0…) # 2E3/2 171013 (2) (exp.) 6p (0…) # 2E3/2 eV (1): For E(M+,eV) = 3.5e-5 x (pix)2 & e-5 x (pix)2 (2):For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay3,Gr4 ; sheet: Ry spectra

29 I+ KERS and threshold predictions:

30 eV iris low I+ KERs, iris open Very high energy I+:
(1) 6.906 6s (1/2) +v2 2E1/2 $ iris low Very high energy I+: Prediction calc. for CH3 + I/I* formation after 2hv, 3hv and 4hv could not predict these! See: ; sheet: Predictions eV ;Lay4,Gr5 For E(M+,eV) = e-5 x (pix)2 ; sheet: Ry spectra

31 eV iris low I+ KERs, updated: 170929 Off resonance iris open
(1) 6.906 6s (1/2) +v2 2E1/2 $ 170928 170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ iris low iris open eV For E(M+,eV) = 3.50e-5 x (pix)2 ;Lay16,Gr17 ; sheet: Ry spectra

32 eV I+ KERs, updated: 170926 Off resonance
286.6 (exp.) 170922; (12) 8.652 7s(0,…) # 2E1/2 $ Off resonance (exp.) eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay14,Gr14 ; sheet: Ry spectra

33 eV I+ KERs, identical For E(M+,eV) = 3.5e-5 x (pix)2
171010; (9c); (exp.) 171010; (9); (exp.) identical eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay30,Gr30 ; sheet: Ry spectra

34 eV I+ KERs, Looks like I resonance(?) ?
171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ (2) 6p (0…) # 2E3/2 170919 I* ->-> I** OK; iodine resonance 171002 (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171004; (4b); (exp.) 171004; (4c); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171010; (9); (exp.) 171020; (10); (exp.) eV 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ ;Lay9,Gr10 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra

35 I+ KERs Comparison of shifted spectra: D(3hv) comparison

36 D3hv / eV I+ KERs Comparison on a D3hv scale:
Joined thresholds for : CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** 171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ (2) 6p (0…) # 2E3/2 170919 (3) 6p(3/2) +v3 2E3/2 : 171002 171004; (4b); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

37 PES´s and Threshold predictions:

38 eV PES, CH3**+ 1hv -> CH3+ CH3(X) + 3hv -> CH3+(X(1/2))
170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ CH3**(3p2A2)+ 1hv -> CH3+ CH3I(X) + 3hv -> CH3I+ I(1/2)+ 3hv -> I+ CH3**(3s2A1´)+ 2hv -> CH3+ eV ;Lay11,Gr12 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Predictions

39 eV PES, Off resonance For E(M+,eV) = 3.29e-5 x (pix)2 170928 (1) 6.906
6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 6s (1/2) +v2 2E1/2 $ 170920 eV ;Lay17,Gr18 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra

40 eV PES, (2) Abs. CH3I + 2hvr -> CH3I**(6p(0..),2E3/2)
CH3I**(6p(0..),2E3/2) + hvpd -> CH3I# CH3I# -> CH3**((2);3p 2A2) + I/I* CH3**((2);3p 2A2) + hvi -> CH3+ + e- i.e. (2r + 1pd + 1i) REMPI NB: Threshold obtained for D(CH3-I) = 2.38 eV (2) 7.306 6p (0…) # 2E3/2 eV For E(e-,eV) = 3.29e-5 x (pix)2 ;Lay0,Gr1 ; sheet: „Ry spectra“ & „Predictions“

41 eV PES, (2) Abs. For E(e-,eV) = 3.29e-5 x (pix)2 MOPO (2) 7.306
170919 (2) 7.306 6p (0…) # 2E3/2 170929 (2) 7.306 6p (0…) # 2E3/2 exc./dye eV For E(e-,eV) = 3.29e-5 x (pix)2 ;Lay20,Gr21 ; sheet: „Ry spectra“

42 eV PES, CH3**(3s2A1´) + 1hv -> CH3+ CH3**(3p2A2) + 1hv -> CH3+
I(3/2)+ 3hv -> I+ 170922; (12) 8.652 7s(0,…) # 2E1/2 $ Does not seem to fit any peaks Suggests that CH3** formation is not Important. See also slide 40 below. eV ;Lay10,Gr11 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Predictions

43 eV PES, updated: 170926 Off resonance For E(M+,eV) = 3.29e-5 x (pix)2
170922; (12) 8.652 7s(0,…) # 2E1/2 $ (exp.) eV ;Lay15,Gr16 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra

44 eV PES, : ? Look the same 171024; (0); 366.025(exp.) 170920 (1)
6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 (3) 6p(3/2) +v3 2E3/2 : 171003; (4a); (?) 171004; (4b); (exp.) 171004; (4c); (exp.) (??) ? Look the same 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171020; (10); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ eV ;Lay5,Gr6 For E(M+,eV) = 3.29e-5 x (pix)2 for all except: For E(M+,eV) = 3.104e-5 x (pix)2 for (6), (10),(0) ; sheet: Ry spectra

45 eV PES, 171011; (9b); 309.11(exp.) 171011; (9a); 309.11(exp.)
171010; (9c); (exp.) 171006; (8); (exp.) eV For E(e,eV) = 3.29e-5 x (pix)2 for (8): ;Lay29,Gr29 For E(e,eV) = 3.187e-5 x (pix)2 for (9,9a,9b,9c) ; sheet: Ry spectra

46 eV PES, Thresholds: 1hv for: For E(M+,eV) = 3.29e-5 x (pix)2
CH3I(Ry(2)) + 1hv -> CH3I+(3/2,1/2)+e CH3I(Ry(1)) + 1hv -> CH3I+(3/2,1/2)+e (11): 2,5 & 3.1 eV (no fit) (12): 2.8 & 3.4 eV (no fit) -which equals that for 3hv excitation via The Rydb. States to for CH3I+(3/2) and CH3I+(1/2) 170920 1 6.906 6s (1/2) +v2 2E1/2 $ 170929 2 7.306 6p (0…) # 2E3/2 170925 (11) 8.429 7p(0,…) # 2E3/2 170922; (12) 8.652 7s(0,…) # 2E1/2 $ eV ;Lay21,Gr22 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

47 Comparison of shifted PES´s
D(1hv) comparison D(3hv) comparison Discussion

48 Good matching of peaks => 1hv ionization processes
PES, (on a D1hv scale) No good fits of thresholds: Ionization of CH3** not important Thresholds: 1hv Processes for CH3**(i;0..) + hv -> CH3+ + e i= 1-6 170920 1 6.906 6s (1/2) +v2 2E1/2 $ 2 7.306 6p (0…) # 2E3/2 170929 171002 (3) 7.36 6p(3/2) +v3 2E3/2 170925 (11) 8.429 7p(0,…) # 2E3/2 12 8.652 7s(0,…) # 2E1/2 $ 170922 Good matching of peaks => 1hv ionization processes are largely involved D1hv / eV ;Lay24,Gr24 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

49 The various thresholds above are:
No good fits of thresholds: Ionization of CH3** not important Let´s consider if the 1hv excitation channels are consistent with I** + 1hv -> I+ + e; I**: Rydberg states of iodine atoms NB: I+ ion signals are strong according to mass spectra. ; sheet: Predictions-short

50 D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e:
170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171004; (4b); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ For E(M+,eV) = 3.29e-5 x (pix)2 D1hv / eV ;Lay24,Gr24 ; sheet: Ry spectra & Predictions-short

51 D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e:
171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ (2) 6p (0…) # 2E3/2 170919 : 171002 (3) 6p(3/2) +v3 2E3/2 171004; (4b); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D1hv / eV For E(e,eV) = 3.29e-5 x (pix)2 Except: For E(e,eV) = 3.154e-5 x (pix)2 for (8) and (6) E(e,eV) = 3.104e-5 x (pix)2 for (0) ;Lay24,Gr24 ; sheet: Ry spectra & Predictions-short

52 D1hv / eV Thresholds for PES, (on a D1hv scale) I** + hv -> I+ + e:
I**(5s25p4(3P1)6s; J=3/2) + hv -> I+ + e  I**(5s25p4(3P2)6s; J =5/2 ) +hv-> I+ +e  I**(5s25p4(3P2)6s; J =3/2 ) +hv-> I+ +e  170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171004; (4b); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D1hv / eV For E(M+,eV) = 3.29e-5 x (pix)2 Except: For E(M+,eV) = 3.154e-5 x (pix)2 for (8) and (6) ;Lay24,Gr24 ; sheet: Ry spectra & Predictions-short

53 D3hv / eV PES, (on a D3hv scale) : I+ <- I(3/2) I+ <- I(1/2):
CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) I+ <- I(3/2) CH3I+(3/2;0..) <- CH3I(X;0..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) I+ <- I(1/2): CH3+ <- CH3(X) 171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 (3) 6p(3/2) +v3 2E3/2 : 171003; (4a) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) ; sheet: Ry spectra

54 D3hv / eV PES, (on a D3hv scale) 3hv processes :
CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) CH3I+(3/2;0..) <- CH3I(X;0..) I+ <- I(3/2) I+ <- I(1/2) CH3+ <- CH3(X) 171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 : 171002 (3) 6p(3/2) +v3 2E3/2 171003; (4a) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) ; sheet: Ry spectra & Predictions-short

55 D(3hv) comparison / The various thresholds above are:
3.138 3.438 2.818 CH3+ formation from CH3(X): by 3hv: I+ formation from I(3/2): I+ formation from I(1/2): CH3I+(3/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(3/2;0,0,0,0,1,0) formation from CH3I(X;,0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,1,0) formation from CH3I(X;0,0,0,0,0,0) by 3 hv: ; sheet: Predictions-short

56 Preliminary conclusive remarks:
; sheet: D(nhv) comp.

57 From the literature: CH3 energetics

58 X(CH3): Methyl Radical, CH3 Vibrational states of the ground
To top X(CH3): Methyl Radical, CH3 Vibrational states of the ground electronic state

59 *3 *2 * CH3** *6 *5 *4 Methyl Radical, CH3 electronic state To top

60 http://webbook. nist. gov/cgi/cbook. cgi
X(CH3+):

61 Energetics: CH3I photoexcitation

62 CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2
(n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; no. 2hv/cm-1 Ry 1 2 3 4 5 6 7 8 9 10 11 12 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; (4) CH3I+ + e; CH3 + I**(min); 70000 (3) 55000 (2) CH3 + I*; (1) CH3 + I; CH3I ; Layo,Gr0; ; sheet: Energetics

63 Abs. spectrum (n) = number of photons CH3 + I+ + e; 103491.0874 i= 6 :
CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 CH3 + I+ + e; i= 6 : 1 CH3+ + e + I; Abs. spectrum i= 6 : 1 (4) CH3 + I** CH3I+ + e; 70000 CH3 + I**(min); (3) 55000 (2) CH3 + I*; (1) CH3 + I; CH3I ; Layo,Gr0; ; sheet: Energetics

64 CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e-
(12) 8.652 7s(0,…) # 2E1/2 $ i.e. CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI

65 CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2
(12) 8.652 7s(0,…) # 2E1/2 $ CH3**(i)+I*; i=1-6 (n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; no. 2hv/cm-1 Ry 1 2 3 4 5 6 7 8 9 10 11 12 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; (4) CH3I+ + e; CH3 + I**(min); 70000 close to 69783 (3) 55000 (2) CH3 + I*; (1) CH3 + I; CH3I ; Layo,Gr0; ; sheet: Energetics


Download ppt "CH3I VMI-REMPI data and analysis:"

Similar presentations


Ads by Google